Page | 44

https://doi.org/10.59298/NIJPP/2025/634452

The Dual Burden of Hepatotoxicity and Hormonal Abnormalities in Obesity: Implications for Diabetes and Cardiovascular Risk

Ernest Nsubuga

Department of Clinical Pharmacy Kampala International University Uganda Email: ernest.nsubuga@studwc.kiu.ac.ug

ABSTRACT

Obesity is a global health crisis that significantly elevates the risk of type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and liver injury. Beyond excess adiposity, obesity generates a complex interplay between hepatotoxicity and hormonal abnormalities that fuels metabolic dysfunction. Hepatic injury arises from lipotoxicity, oxidative stress, mitochondrial dysfunction, and immune activation, progressing from steatosis to steatohepatitis and fibrosis. Concurrently, hormonal imbalances, including insulin resistance, leptin resistance, hypoadiponectinemia, and altered sex steroid signaling, exacerbate energy dysregulation and cardiovascular strain. These two processes are not independent; rather, hepatotoxicity amplifies endocrine disruption by impairing insulin clearance and adipokine signaling, while hormonal disturbances aggravate hepatic injury through altered lipid metabolism and inflammatory cascades. Together, they accelerate the trajectory toward T2DM, atherosclerosis, and heart failure. This review synthesizes current knowledge on the dual burden of hepatotoxicity and hormonal imbalance in obesity, explores mechanistic intersections, and highlights clinical implications for diabetes and cardiovascular risk. Emerging biomarkers, lifestyle and pharmacologic interventions, and integrated therapeutic strategies are discussed to provide a framework for mitigating these interconnected burdens in high-risk populations.

Keywords: obesity, hepatotoxicity, hormonal imbalance, diabetes, cardiovascular risk

INTRODUCTION

Obesity has emerged as one of the most pressing global health challenges, affecting more than 650 million adults worldwide and steadily increasing in prevalence across all age groups [1-6]. Traditionally defined as an excess accumulation of adipose tissue, obesity is now recognized as a complex systemic disease that disrupts metabolic, hormonal, and organ-level functions [7-11]. Far from being a passive energy store, adipose tissue in obesity becomes metabolically active, releasing adipokines, free fatty acids, and inflammatory mediators that influence the physiology of distant organs [12-17]. Two systems particularly vulnerable to these disturbances are the liver and the endocrine network, which together orchestrate metabolic homeostasis. The liver, as the central hub of glucose, lipid, and xenobiotic metabolism, is profoundly impacted by nutrient excess. Chronic exposure to elevated free fatty acids and nutrient overload leads to hepatic steatosis, mitochondrial dysfunction, and oxidative injury. These insults initiate inflammatory cascades, recruiting immune cells and promoting progression to metabolic dysfunction—associated steatotic liver disease (MASLD) [18-23]. Once established, liver injury not only compromises hepatic metabolic capacity but also contributes to systemic inflammation and altered hormone dynamics. In parallel, obesity induces multiple hormonal abnormalities that exacerbate metabolic dysfunction. Insulin resistance and hyperinsulinemia drive impaired glucose utilization and β -cell stress, while leptin resistance undermines appetite regulation and

©NIJPP ONLINE ISSN: 2992-5479
Publications 2025 PRINT ISSN: 2992-605X

energy expenditure [24-27]. Reduced adiponectin levels diminish insulin sensitivity and vascular protection, and dysregulation of sex hormones alters fat distribution and cardiovascular risk profiles. Importantly, hepatotoxicity and hormonal imbalance are not isolated phenomena [28-34]. Liver injury impairs insulin clearance and amplifies inflammatory signaling, aggravating systemic endocrine dysfunction. Conversely, endocrine disturbances accelerate hepatic lipid deposition and fibrogenesis [35-39]. This bidirectional relationship forms a pathogenic loop that significantly heightens the risk of type 2 diabetes, cardiovascular disease, and premature mortality.

2. Hepatotoxicity in Obesity

Hepatotoxicity represents a central component of obesity-related metabolic dysfunction, reflecting the combined effects of lipid overload, oxidative injury, immune activation, and fibrogenesis [40-47]. The liver is uniquely positioned as a metabolic hub, regulating glucose, lipid, and xenobiotic metabolism, and thus bears the brunt of nutrient excess. In obesity, the hepatic environment shifts from a balanced metabolic state toward a proinflammatory and lipotoxic milieu, ultimately predisposing individuals to metabolic dysfunction—associated steatotic liver disease (MASLD), steatohepatitis, and fibrosis [48-52].

2.1 Lipotoxicity and oxidative stress

Obesity drives the excessive delivery of free fatty acids (FFAs) to the liver from adipose tissue lipolysis and dietary intake [53-58]. When storage capacity is exceeded, hepatocytes accumulate toxic lipid intermediates such as diacylglycerols and ceramides. These molecules interfere with insulin signaling pathways, particularly at the level of insulin receptor substrate phosphorylation, leading to hepatic insulin resistance [59-64]. In addition, lipotoxicity impairs mitochondrial function by overloading β -oxidation pathways, resulting in incomplete fatty acid oxidation and leakage of electrons from the respiratory chain. This promotes the excessive generation of reactive oxygen species (ROS), which overwhelm antioxidant defenses such as glutathione [65-68]. ROS damage mitochondrial DNA, proteins, and lipids, setting off a cascade of oxidative stress that triggers hepatocyte apoptosis and necrosis [13]. Over time, this oxidative burden lowers the regenerative capacity of hepatocytes and sensitizes the liver to further injury from environmental, dietary, or pharmacological stressors.

2.2 Inflammation and immune activation

As hepatocytes undergo lipotoxic injury, they release damage-associated molecular patterns (DAMPs), including mitochondrial DNA, high-mobility group box 1 (HMGB1), and oxidized lipids $\lceil 69-74 \rceil$. These signals activate resident macrophages (Kupffer cells) as well as liver sinusoidal endothelial cells, which in turn recruit circulating monocytes and neutrophils $\lceil 75-80 \rceil$. This immune activation is mediated through pattern recognition receptors such as Toll-like receptors (TLRs) and NOD-like receptors, leading to nuclear factor-kappa B (NF- κ B) signaling and transcription of pro-inflammatory cytokines $\lceil 81-85 \rceil$. Tumor necrosis factor-alpha (TNF- α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1 β) not only perpetuate hepatic inflammation but also contribute to systemic insulin resistance. The NLRP3 inflammasome plays a particularly important role, promoting caspase-1 activation and maturation of IL-1 β and IL-18 $\lceil 17 \rceil$. Chronic activation of these immune pathways drives the transition from simple steatosis to steatohepatitis (MASH), a state of persistent hepatic injury with higher risk of progression to fibrosis and cirrhosis $\lceil 86-90 \rceil$.

2.3 Fibrosis and systemic consequences

Persistent inflammation and hepatocellular injury stimulate hepatic stellate cells (HSCs), which transdifferentiate into myofibroblast-like cells [19]. Activated HSCs deposit extracellular matrix proteins such as collagen type I and III, leading to fibrosis. Fibrosis is initially a protective wound-healing response but becomes maladaptive when sustained, progressively distorting hepatic architecture and impairing metabolic function [20]. Fibrotic remodeling also alters sinusoidal blood flow, worsening hypoxia and perpetuating oxidative stress [21]. Beyond the liver, hepatotoxicity has systemic consequences. Impaired hepatic metabolism alters drug biotransformation, increasing susceptibility to drug-induced liver injury. The inflamed liver also contributes to systemic metabolic dysfunction by releasing pro-inflammatory cytokines and acute-phase proteins, heightening cardiovascular risk [22]. Furthermore, hepatokines such as fetuin-A and fibroblast growth factor 21 (FGF21) link liver injury to peripheral insulin resistance, atherogenesis, and cardiac dysfunction [91-95]. In summary, obesity-induced hepatotoxicity arises from the convergence of lipotoxicity, oxidative stress, immune activation, and fibrosis [24]. These mechanisms not only compromise liver function but also amplify systemic metabolic disturbances, thereby increasing the risk of diabetes and cardiovascular disease.

3. Mechanistic Intersections

The convergence of hepatotoxicity and hormonal imbalance provides a critical mechanistic framework for understanding the heightened risk of diabetes and cardiovascular disease in obesity. These two processes, though

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Page | 45

©NIJPP ONLINE ISSN: 2992-5479 **Publications 2025** PRINT ISSN: 2992-605X

distinct in origin, amplify one another through overlapping metabolic, inflammatory, and endocrine pathways. Their interplay establishes a pathogenic loop that accelerates organ dysfunction and systemic complications.

3.1 Hepatotoxicity leading to hormonal imbalance

In obesity, hepatocellular injury alters multiple aspects of endocrine regulation [25]. One of the liver's key functions is insulin clearance. When hepatocytes are damaged by lipid accumulation and oxidative stress, insulin clearance is impaired, resulting in chronic hyperinsulinemia [26]. This state not only worsens peripheral insulin resistance but also accelerates pancreatic β-cell fatigue. Additionally, hepatotoxicity disrupts bile acid signaling through receptors Page | 46 such as FXR and TGR5 [27]. These receptors are central to the regulation of glucose homeostasis, lipid metabolism, and energy expenditure. Their dysregulation in the context of liver injury contributes to systemic metabolic imbalance. Injured hepatocytes also release hepatokines, including fetuin-A and FGF21, which have been implicated in insulin resistance, inflammation, and endothelial dysfunction [28]. Together, these mechanisms illustrate how liver injury directly disrupts hormonal homeostasis.

3.2 Hormonal imbalance promoting hepatotoxicity

Conversely, obesity-associated hormonal disturbances actively drive hepatic injury [29]. Insulin resistance, coupled with compensatory hyperinsulinemia, stimulates hepatic de novo lipogenesis, resulting in the accumulation of triglycerides and toxic lipid intermediates within hepatocytes [30]. This process exacerbates steatosis and enhances oxidative stress. Leptin resistance, another hallmark of obesity, worsens hepatic pathology by impairing the hormone's anti-fibrotic actions. Under normal conditions, leptin helps regulate stellate cell activity, preventing excessive fibrogenesis. Resistance to leptin signaling allows unchecked activation of stellate cells, promoting fibrosis [31]. Hypoadiponectinemia further compounds these effects. Adiponectin is a protective adipokine with potent antiinflammatory and insulin-sensitizing functions. Low adiponectin levels diminish fatty acid oxidation and increase susceptibility to hepatic steatosis and inflammation [32]. Alterations in sex steroid levels add another dimension, as reduced estrogen or testosterone activity fosters visceral adiposity, disrupts lipid metabolism, and accelerates hepatocellular stress. Collectively, these endocrine abnormalities establish a hormonal environment conducive to liver injury and fibrosis [33].

3.3 Cardiometabolic outcomes

The bidirectional relationship between hepatotoxicity and hormonal imbalance culminates in cardiometabolic disease [347]. Chronic hyperinsulinemia and hepatic inflammation promote endothelial dysfunction, vascular remodeling, and atherogenesis. Pro-inflammatory cytokines and altered adipokine profiles, such as elevated leptin and reduced adiponectin, create a pro-atherogenic milieu that destabilizes plaques and increases thrombotic risk [35]. Hepatokines released during liver injury further contribute to cardiac dysfunction by inducing hypertrophy and impairing myocardial metabolism [36]. Meanwhile, pancreatic β-cell exhaustion, driven by both reduced hepatic insulin clearance and persistent insulin resistance, results in overt type 2 diabetes [37]. The combination of steatotic liver disease, endocrine dysregulation, and systemic inflammation establishes a powerful driver of cardiovascular mortality, which often exceeds liver-related mortality in patients with obesity [38]. In summary, hepatotoxicity and hormonal imbalance form an integrated pathogenic network that amplifies the metabolic, inflammatory, and endocrine disturbances of obesity. This intersection not only accelerates the onset of diabetes but also promotes cardiovascular dysfunction, explaining the disproportionately high cardiometabolic risk seen in individuals with obesity.

CONCLUSION

Obesity creates a dual burden of hepatotoxicity and hormonal imbalance that fuels the development of diabetes and cardiovascular disease. These interconnected processes amplify one another, generating a self-reinforcing cycle of metabolic dysfunction. Clinical recognition of this dual burden underscores the importance of early detection, risk stratification, and integrated interventions. Lifestyle modification remains foundational, while pharmacologic and emerging therapies offer complementary benefits. Future research must focus on mechanistic biomarkers, gut-liverendocrine crosstalk, and personalized approaches to mitigate this global health challenge.

REFERENCES

- 1. Abad-Jiménez Z, Vezza T. Obesity: a global health challenge demanding urgent action. Biomedicines. 2025;13(2):502. doi:10.3390/biomedicines13020502
- Richard AJ, White U, Elks CM, Stephens JM. Adipose tissue: Physiology to Metabolic Dysfunction. Endotext NCBI Bookshelf. Available from: https://www.ncbi.nlm.nih.gov/books/NBK555602/# ncbi dlg citbx NBK555602
- Vachharajani V, Granger DN. Adipose tissue: A motor for the inflammation associated with obesity. IUBMB Life. 2009;61(4):424-30. doi:10.1002/iub.169

©NIJPP ONLINE ISSN: 2992-5479
Publications 2025 PRINT ISSN: 2992-605X

4. Tauil RB, Golono PT, De Lima EP, De Alvares Goulart R, Guiguer EL, Bechara MD, et al. Metabolic-Associated fatty liver disease: the influence of oxidative stress, inflammation, mitochondrial dysfunctions, and the role of polyphenols. Pharmaceuticals. 2024;17(10):1354. doi:10.3390/ph17101354

- 5. Heindel JJ, Blumberg B, Cave M, Machtinger R, Mantovani A, Mendez MA, et al. Metabolism disrupting chemicals and metabolic disorders. Reproductive Toxicology. 2016;68:3–33. doi:10.1016/j.reprotox.2016.10.001
- 8. Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, et al. New Insight into Page | 47 Adiponectin Role in Obesity and Obesity-Related Diseases. BioMed Research International. 2014;2014:1–14. doi:10.1155/2014/658913
- 7. Cao X, Wang N, Yang M, Zhang C. Lipid accumulation and insulin resistance: bridging metabolic Dysfunction-Associated fatty liver disease and chronic kidney disease. International Journal of Molecular Sciences. 2025;26(14):6962. doi:10.3390/ijms26146962
- 8. Uroko, Robert I.., Adamude, Fatima A.., Egba, Simeon I., Ani, Chijioke C and 1 Ekpenyong, James E. Hepatoprotective Effects of Methanol Extract of *Acanthus montanus* (*acanthaceae*) Leaves on Acetaminophen Induced Liver Injury in Rats. *Pharmacologyonline*, 2020; 1: 248-260
- 9. Rui L. Energy metabolism in the liver. Comprehensive Physiology. 2014:177-97 doi:10.1002/cphy.c130024
- 10. Boden G. Obesity and free fatty acids. Endocrinology and Metabolism Clinics of North America. 2008;37(3):635-46. doi:10.1016/j.ecl.2008.06.007
- 11. Bo T, Gao L, Yao Z, Shao S, Wang X, Proud CG, et al. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metabolism. 2024;36(5):947–68. doi:10.1016/j.cmet.2024.04.006
- 12. Tsushima K, Bugger H, Wende AR, Soto J, Jenson GA, Tor AR, et al. Mitochondrial reactive oxygen species in lipotoxic hearts induce Post-Translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circulation Research. 2017;122(1):58–73. doi:10.1161/circresaha.117.311307
- 13. Aja O. A., Egba S. I., Uhuo Emmanuel Nnaemeka, Alaebo Prince Ogocukwu, Mba Obinna Joseph, and Oriaku Chinwe Edith. Hepatoprotective potentials of aqueous chloroform and methanol leaf extracts Whitfieldia lateritia 2, 4-dinitrophenylhydrazine induced anaemia in rats. Bio-research and Biotechnology, 2022; 20(2) 1434-1445
- 14. Han H, Desert R, Das S, Song Z, Athavale D, Ge X, et al. Danger signals in liver injury and restoration of homeostasis. Journal of Hepatology. 2020;73(4):933–51. doi:10.1016/j.jhep.2020.04.033
- 15. Coelho I, Duarte N, Macedo MP, Penha-Gonçalves C. Insights into Macrophage/Monocyte-Endothelial Cell Crosstalk in the Liver: A Role for Trem-2. Journal of Clinical Medicine. 2021;10(6):1248. doi:10.3390/jcm10061248
- 16. Wicherska-Pawłowska K, Wróbel T, Rybka J. Toll-Like receptors (TLRs), NOD-Like receptors (NLRs), and RIG-I-Like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases. International Journal of Molecular Sciences. 2021;22(24):13397. doi:10.3390/ijms222413397
- 17. Rafaqat S, Gluscevic S, Mercantepe F, Rafaqat S, Klisic A. Interleukins: Pathogenesis in Non-Alcoholic fatty liver Disease. Metabolites. 2024;14(3):153. doi:10.3390/metabo14030153
- 18. Jee YM, Lee JY, Ryu T. Chronic inflammation and immune dysregulation in Metabolic-Dysfunction-Associated steatotic liver disease progression: from steatosis to hepatocellular carcinoma. Biomedicines. 2025;13(5):1260. doi:10.3390/biomedicines13051260
- 19. Jiang JX, Török NJ. Liver injury and the activation of the hepatic myofibroblasts. Current Pathobiology Reports. 2013;1(3):215–23. doi:10.1007/s40139-013-0019-6
- 20. Khanam A, Saleeb PG, Kottilil S. Pathophysiology and treatment options for hepatic fibrosis: Can it be completely cured? Cells. 2021;10(5):1097. doi:10.3390/cells10051097
- 21. Foglia B, Novo E, Protopapa F, Maggiora M, Bocca C, Cannito S, et al. Hypoxia, Hypoxia-Inducible factors and liver fibrosis. Cells. 2021;10(7):1764. doi:10.3390/cells10071764
- 22. Tiwari V, Shandily S, Albert J, Mishra V, Dikkatwar M, Singh R, et al. Insights into Medication-induced Liver Injury: Understanding and Management Strategies. Toxicology Reports. 2025;14:101976. doi:10.1016/j.toxrep.2025.101976
- 23. Yoo HJ, Choi KM. Hepatokines as a Link between Obesity and Cardiovascular Diseases. Diabetes & Metabolism Journal. 2015;39(1):10. doi:10.4093/dmj.2015.39.1.10

©NIJPP ONLINE ISSN: 2992-5479
Publications 2025 PRINT ISSN: 2992-605X

24. Cavaliere G, Cimmino F, Trinchese G, Catapano A, Petrella L, D'Angelo M, et al. From Obesity-Induced Low-Grade Inflammation to Lipotoxicity and Mitochondrial Dysfunction: Altered Multi-Crosstalk between Adipose Tissue and Metabolically Active Organs. Antioxidants. 2023;12(6):1172. doi:10.3390/antiox12061172

- 25. Ylli D, Sidhu S, Parikh T, Burman KD. Endocrine changes in obesity. Endotext NCBI Bookshelf. 2022. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279053/#_ncbi_dlg_citbx_NBK279053
- 26. Najjar SM, Perdomo G. Hepatic insulin clearance: Mechanism and physiology. Physiology. 2019;34(3):198- Page | 48 215. doi:10.1152/physiol.00048.2018
- 27. Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. AJP Gastrointestinal and Liver Physiology. 2020;318(3):G554-73. doi:10.1152/ajpgi.00223.2019
- 28. Milani I, Codini M, Guarisco G, Chinucci M, Gaita C, Leonetti F, et al. Hepatokines and MASLD: the GLP1-RAS-FGF21-Fetuin-A crosstalk as a therapeutic target. International Journal of Molecular Sciences. 2024;25(19):10795. doi:10.3390/ijms251910795
- 29. Elsabaawy M. Liver at crossroads: unraveling the links between obesity, chronic liver diseases, and the mysterious obesity paradox. Clinical and Experimental Medicine. 2024;24(1). doi:10.1007/s10238-024-01493-y
- 30. Bo T, Gao L, Yao Z, Shao S, Wang X, Proud CG, et al. Hepatic selective insulin resistance at the intersection of insulin signaling and metabolic dysfunction-associated steatotic liver disease. Cell Metabolism. 2024;36(5):947–68. doi:10.1016/j.cmet.2024.04.006
- 31. Martínez-Uña M, López-Mancheño Y, Diéguez C, Fernández-Rojo MA, Novelle MG. Unraveling the Role of Leptin in Liver Function and Its Relationship with Liver Diseases. International Journal of Molecular Sciences. 2020;21(24):9368. doi:10.3390/ijms21249368
- 32. Khoramipour K, Chamari K, Hekmatikar AA, Ziyaiyan A, Taherkhani S, Elguindy NM, et al. Adiponectin: structure, physiological functions, role in diseases, and effects of nutrition. Nutrients. 2021;13(4):1180. doi:10.3390/nu13041180
- 33. Kasarinaite A, Sinton M, Saunders PTK, Hay DC. The influence of sex hormones in liver function and disease. Cells. 2023;12(12):1604. doi:10.3390/cells12121604
- 34. Vargas M, De Castro Cardoso Toniasso S, Riedel PG, Baldin CP, Reis FLD, Pereira RM, et al. Metabolic disease and the liver: A review. World Journal of Hepatology. 2024;16(1):33–40. doi:10.4254/wjh.v16.i1.33
- 35. Balistreri CR, Caruso C, Candore G. The role of adipose tissue and adipokines in Obesity-Related Inflammatory Diseases. Mediators of Inflammation. 2010;2010:1–19. doi:10.1155/2010/802078
- 36. Jung TW, Yoo HJ, Choi KM. Implication of hepatokines in metabolic disorders and cardiovascular diseases. BBA Clinical. 2016;5:108–13. doi:10.1016/j.bbacli.2016.03.002
- 37. Dludla PV, Mabhida SE, Ziqubu K, Nkambule BB, Mazibuko-Mbeje SE, Hanser S, et al. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World Journal of Diabetes. 2023;14(3):130–46. doi:10.4239/wjd.v14.i3.130
- 38. Basil B, Myke-Mbata BK, Eze OE, Akubue AU. From adiposity to steatosis: metabolic dysfunction-associated steatotic liver disease, a hepatic expression of metabolic syndrome current insights and future directions. Clinical Diabetes and Endocrinology. 2024;10(1). doi:10.1186/s40842-024-00187-4
- 39. Obeagu EI, Alum EU, Obeagu GU, Ugwu OP. Prostate Cancer: Review on Risk Factors. Eurasian Experiment Journal of Public Health(EEJPH). 2023;4(1):4-7.
- 40. Ugwu OP, Amasiorah VI. The effects of crude ethanol root extract and fractions of sphenocentrum jollyanum on the lipid profile of streptozotocininduced diabetic wistar albino rats. IDOSR Journal of Biology, Chemistry And Pharmacy. 2020;5(1):36-46.
- 41. Igwenyi IO, Nchi PO, Okechukwu UP, Igwenyi IP, Obasi DC, Edwin N, Uraku AJ, Ze AC. Nutritional potential of Azadirachta indica seeds. Indo American Journal of Pharmaceutical Sciences. 2017 Feb 1;4(2):477-82.
- 42. Offor CE, Okaka AN, Ogbugo SO, Egwu CO, Ugwu PC. Effects of ethanol leaf extract of Pterocarpus santalinoides on haemoglobin, packed cell volume and platelets. IOSR-JNHS 2015; 4: 108. 2015;112:93.
- 43. Obeagu EI, Alum EU, Ugwu OPC. Hepcidin: The gatekeeper of iron in malaria resistance. Newport Int J Res Med Sci. 2023;4(2):1–8. doi:10.59298/NIJRMS/2023/10.1.1400.
- 44. Offor CE, Agidi JU, Egwu CO, Ezeani N, Okechukwu PCU. Vitamin and mineral contents of Gongronema latifolium leaves. World J Med Sci. 2015;12(2):189–91.

Page | 49

©NIJPP ONLINE ISSN: 2992-5479 **Publications 2025** PRINT ISSN: 2992-605X

45. Ogbanshi ME, Agbafor KN, Ominyi CM, Okechukwu PCU, Nwali BU, Ali FU. Changes in reproductive functions of adult male rats administered water and salt samples from Okposi and Uburu Nigerian salt lakes. Am Eurasian J Toxicol Sci. 2015;7(2):55-62.

- 46. Okechukwu PCU, Offor CE, Ibiam UA, Ezugwu AL, Uraku AJ, Igwe CN, Okon MB. The effect of ethanol extract of Jatropha curcas on renal markers of chloroform intoxicated albino Wistar rats. Eur J Biol Sci. 2015;7(1):21-5. doi:10.5829/idosi.ejbs.2015.7.01.1106.
- 47. Offor CE, Aja PC, Ugwu O, Agbafo KN. The effects of ethanol leaf-extract of Gmelina arborea on total protein and albumin concentrations in albino rats. Glob. J. Environ. Res. 2015;9(1):1-4.
- 48. Alum E, Ugwu PC, Egba S, Uti D, Alum B. Extension, KP: Climate Variability and Malaria Transmission: Unraveling the Complex Relationship. INOSR Scientific Research. 11, 16-22 (2024) [Internet]. 2013
- 49. Onyeze RC, Udeh SM, Okwor JC, Ugwu OP. Isolation and characterization of bacteria that are associated with the production and spoilage of ogi (akamu). International Journal of Pharma Medcine and Biological Sciences. 2013;2(3):79-85.
- 50. Alum EU, Obeagu EI, Ugwu OP-C. Enhancing quality water, good sanitation, and proper hygiene is the panacea to diarrhea control and the attainment of some related sustainable development goals: A review. Medicine (Baltimore). 2024 Sep 20;103(38):e39578. doi:10.1097/MD.000000000039578.
- 51. Alum EU, Uti DE, Obeagu EI, Ugwu OPC, Alum BN. Cancer's psychosocial aspects: impact on patient outcomes. Elite J Med. 2024;2(6):32-42.
- 52. Alum EU, Ugwu OP. Nutritional Strategies for Rheumatoid Arthritis: Exploring Pathways to Better Management. INOSR Scientific Research. 2023;10(1):18-26.
- 53. Alum EU, Mathias CD, Ugwu OP, Aja PM, Obeagu EI, Uti DE, Okon MB. Phytochemical composition of Datura stramonium ethanol leaf and seed extracts: A comparative study. IAA Journal of Biological Sciences. 2023;10(1):118-25.
- 54. Ugwu Okechukwu PC, Amasiorah VI. Review on Health Implications. Benefits and Biochemistry of Alcohol Intoxication, INOSR Experimental Sciences. 2020;6(1):62-74.
- 55. PC UO, Amasiorah VI. Review on Health Implications, Benefits and Biochemistry of Alcohol Intoxication. INOSR Experimental Sciences. 2020;6(1):62-74.
- 56. Okechukwu P, Ossai D, Tukur G, Eze O, Ekwueme OC. Bacteriuria and urinary schistosomiasis in primary school children in rural communities in Enugu State, Nigeria. Pan African Medical Journal. 2014;18:15.
- 57. Odo Christian E, Nwodo Okwesili FC, Joshua Parker E, Ugwu Okechukwu PC, Okonkwo CC. Acute Toxicity Investigation And Anti-Diarrhoeal Effect Of The Chloroform-Methanol Extract Of Seed Of Persea Americana. Journal of Pharmacy Research. 2013;6(2):331-5.
- 58. Alum EU, Uti DE, Ugwu OPC, Obeagu EI, Alum BN. Unveiling the microbial orchestra: exploring the role of microbiota in cancer development and treatment. Discov Onc. 2025;16:646. doi:10.1007/s12672-025-02352-2.
- 59. Alum EU, Ugwu OPC, Egba SI, Uti DE, Alum BN. Climate variability and malaria transmission: unraveling the complex relationship. **INOSR** Sci Res. 2024;11(2):16-22. doi:10.59298/INOSRSR/2024/1.1.21622.
- 60. Ugwu CN, Okon MB, Ugwu OP. The Effects of Freezing on the Nutritional Composition of Fish. INOSR Experimental Sciences. 2024;13(1):61-5.
- 61. Alum EU, Ugwu OP, Obeagu EI, Orji OU, Edwin N, Okon MB. Religious Leaders as Advocates for Promoting Exclusive Breastfeeding in East Africa. International Journal of Innovative and Applied Research. 2023;11(12):10-5.
- 62. Obeagu EI, Obeagu GU, Alum EU, Ugwu OP. Comprehensive Review of Antiretroviral Therapy Effects on Red Blood Cells in HIV Patients. INOSR Experimental Sciences. 2023;12(3):63-72.
- 63. Onyeze RC, Onah GT, Onwukwe CL, Ugwu OPC. Comparative effects of neem and lemongrass leaf extracts on Salmonella spp. World J Pharm Res. 2013;2(4):1177-1185.

ONLINE ISSN: 2992-5479 **Publications 2025** PRINT ISSN: 2992-605X

64. Obeagu EI, Obeagu GU, Alum EU, Ugwu OP. Understanding the Impact of HIV-Associated Bone Marrow Alterations on Erythropoiesis. INOSR Scientific Research. 2023;10(1):1-1.

- 65. Ugwu Okechukwu PC, Amasiorah VI. The In vitro Antioxidant Potentials of the Crude Ethanol Root Extract and Fractions of Sphenocentrum jollyanum. INOSR Applied Sciences 6 (1). 2020:125-33.
- 66. Ugwu Okechukwu PC, Onyeneke EC, Igwenyi IO, Aja PM, Ugwuoke KC, Okon Michael B, Onyeke SC. The Effects of Crude Ethanol Root Extract and Fractions of Sphenocentrum jollyanum on Liver and Kidney Function Parameters of StreptozotocinInduced Diabetic Wistar Aja PM, Udeh SM, Opajobi AO, Uzuegbu UE, Alum EU, Edwin N, Okechukwu UP. HEPATO-PROTECTIVE EFFECT OF AQUEOUS LEAF-EXTRACT OF TALINUM TRIANGULARE IN MONOSODIUM GLUTAMATE (MSG) INDUCED HEPATIC DAMAGE IN ALBINO RATS. Indo American Journal of Pharmaceutical Sciences. 2017 Feb 1;4(2):464-70. Albino Rats. IAA Journal of Scientific Research. 2018;4(1):75-90.
- 67. Offor C, Chukwu B, Igwenyi I, Ugwu OP, Aja P. Effect of Ethanol Leaf-Extract of Annona muricata on Serum Total Protein and Albumin Concentrations in Albino Rats. Academic Journal of Oral and Dental Medicine. 2015;2(1):5-7.
- 68. Chukwuezi Fabian O, Ugwu Okechukwu PC. Distribution of Mycobacterium bacilli in Onitsha Metropolis and its Relationship with HIV Infection. Pharmanest An International Journal of Advances in Pharmaceutical Sciences. 2013;4(5):902-6.
- 69. Uti DE, Alum EU, Atangwho IJ, Obeagu EI, Ugwu OPC. Lipid-based nano-carriers for the delivery of antiobesity natural compounds: advances in targeted delivery and precision therapeutics. J Nanobiotechnol. 2025;23:336. doi:10.1186/s12951-025-03412-z.
- 70. Alum EU, Ugwu OPC. Artificial intelligence in personalized medicine: transforming diagnosis and treatment. Discov Appl Sci. 2025;7:193. doi:10.1007/s42452-025-06625-x.
- 71. Onyeze RC, Udeh SMC, Ani LC, Ugwu OPC. Microbiology of honey collected from three different locations in Enugu State, Nigeria. World J Pharm Res. 2013;2(4):1086-1095.
- 72. Enechi OC, Ibechem Augustine C, Ugwu Okechukwu PC. Distribution of Iodine and some goitrogens in two selected water bodies (Kalawa and Adaoka Rivers) in Enugu State, Nigeria. Exp. Int. J. Sci. Technol. 2013;12(1):748-61.
- 73. Alum EU, Obeagu EI, Ugwu OPC, Alum BN, Arinze ED, Ukaidi CUA. Exploring the differential impacts of intermittent fasting on men and women. Elite J Health Sci. 2024;2(5):37-44.
- 74. Edwin N, Obasi DC, Offor CE, Obasi JN, Ugwu OPC, Aja PM, Ogbanshi ME, Uraku AJ, Alum EU, Ali FU. Impact of soil physicochemical properties on mineral composition of cassava samples from Ikwo LGA of Ebonyi State, Nigeria. J Chem Soc Niger. 2022;47(6). doi:10.46602/jcsn.v47i6.821.
- 75. Ikezu UJM, Ajiwe VIE, Iloh EO, Okechukwu PCU. Phytochemical and atomic absorption spectroscopic analysis of root, stem and leaf extracts of Acanthus montanus. Middle East J Sci Res. 2014;21(6):875-878.
- 76. Udeozo IP, Akpaba ES, Ugwu OPC, Okoye NH, Umedum NL. Qualitative alkaloidal analyses of some selected Nigerian medicinal plants used in herbal treatment of diseases. Int J Life Sci Biotechnol Pharm Res. 2013;2(3):300-305.
- 77. Onyeze RC, Udeh SMC, Ilo PC, Ugwu OPC. Antibacterial evaluation of Moringa oleifera leaf extract on selected bacterial pathogens (Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa). World J Pharm Res. 2013;2(4):1065-1077.
- 78. Alum EU, Obasi DC, Abba JN, Aniokete UC, Okoroh PN, Ugwu OPC, Uti DE. Endogenous plant signals and human health: molecular mechanisms, ecological functions, and therapeutic prospects. Biochem Biophys Rep. 2025;43:102114. doi:10.1016/j.bbrep.2025.102114.
- 79. Mezieobi KC, Alum EU, Ugwu OPC, Uti DE, Alum BN, Egba SI, Ewah CM. Economic burden of malaria on developing countries: a mini review. Parasite Epidemiol Control. 2025;30:e00435. doi:10.1016/j.parepi.2025.e00435.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Page | 50

Page | 51

ONLINE ISSN: 2992-5479 **Publications 2025** PRINT ISSN: 2992-605X

80. Alum EU, Nwuruku OA, Ugwu OPC, Uti DE, Alum BN, Edwin N. Harnessing nature: plant-derived nanocarriers for targeted drug delivery in cancer therapy. Phytomed Plus. 2025;5(3):100828. doi:10.1016/j.phyplu.2025.100828.

- 81. Nyamboga TO, Ugwu OPC, Ugwu JN, Alum EU, Eze VHU, Ugwu CN, Ejemot-Nwadiaro RI. Biotechnological innovations in soil health management: a systematic review of integrating microbiome engineering, bioinformatics, and sustainable practices. Cogent Food Agric. 2025;11(1):2519811. doi:10.1080/23311932.2025.2519811.
- 82. Madu CV, Alum EU, Aloh HE, Ugwu OPC, Obeagu EI, Uti DE, Egba SI, Ukaidi CUA, Alum NB. The price of progress: assessing the financial costs of HIV/AIDS management in East Africa. Medicine (Baltimore). 2025;104(18):e42300. doi:10.1097/MD.0000000000042300.
- 83. Ugwu OPC, Anyaegbunam CN, Uzochukwu MN, Onohuean H. Harnessing plant metabolic pathways for innovative diabetes management: unlocking the therapeutic potential of medicinal plants. Plant Signal Behav. 2025;20(1):2486076. doi:10.1080/15592324.2025.2486076.
- 84. Ogbodo JO, Egba SI, Ikechukwu GC, Paul PC, Mba JO, Ugwu OPC, Ezike TC. Volatile organic compounddrug receptor interactions: a potential tool for drug design in the search for remedies for increasing toxic occupational exposure. Processes. 2025;13(1):154. doi:10.3390/pr13010154.
- 85. Nwite MO, Agwu SC, Afiukwa CA, Ugwu OPC. Comprehensive phenotypic assessment of rice diseases in cultivated farms within Okpuitumo Community, Ikwo Local Government Area, Ebonyi State: implications for sustainable rice crop management. Newport Int J Biol Appl Sci. 2023;4(1):26-31. doi:10.59298/NIJBAS/2023/1.4.11111.
- 86. Uraku AJ, Okechukwu PCU, Nzubechukwu E. Preliminary phytochemical screening of Spilanthes uliginosa, Ocimum basilicum, Hyptis spicigera and Cymbopogon citratus leaf extracts and haematological changes of mice infected with malaria parasite. Am Eurasian J Sci Res. 2015;10(1):12-17.
- 87. Enechi OC, Ogochukwu BO, Okechukwu PCU. Effect of fermentation on biochemical properties of maize (Zea mays L.). World Appl Sci J. 2014;31(5):724-729.
- 88. Onyeze RC, Onah GT, Nwadi NO, Ugwu OPC. Bacteriological examination of abattoir with reference to Escherichia coli and Staphylococcus species. World J Pharm Res. 2013;2(4):1154-1163.
- 89. Ogugua VN, Anaduaka EG, Chijioke C, Egba SI, Ugwu OPC. Effects of storage on auto-oxidation levels of selected alcoholic and non-alcoholic beverages in Nsukka town, Enugu State of Nigeria. World J Pharm Res. 2013;2(4):758-764.
- 90. Ogugua VN, Anaduaka EG, Chijioke C, Egba SI, Ugwu OPC. Effects of storage on auto-oxidation levels of selected alcoholic and non-alcoholic beverages in Nsukka town, Enugu State of Nigeria. World J Pharm Res. 2013;2(4):758-764.
- 91. Omeh YS, Ijioma VU, Ugwu OPC, Enechi OC. Characterisation and fatty acid profile of Cucurbita pepo seed oil. World J Pharm Pharm Sci. 2013;2(3):825-832.
- 92. Omeh YS, Ugwu OPC, Enechi OC. The effect of feeding Mucuna oil on the lipid profile and creatine kinase enzyme of albino rats. World J Pharm Pharm Sci. 2013;2(3):802-813.
- 93. Enechi OC, Obiora EN, Okechukwu PU. Chromatographic Identification and the Effect of the Alkaloidal Extract of Buccholzia coriaceae Seeds on the Body Weights and Relative Liver Weights of Mice. Advances in Biological Research. 2013;7(5):188-93.
- 94. Mezieobi KC, Alum EU, Ugwu OPC, Uti DE, Alum BN, Egba SI, Ewah CM. Economic burden of malaria developing countries: a mini review. Parasite Epidemiol Control. 2025;30:e00435. doi:10.1016/j.parepi.2025.e00435.
- 95. Adachukwu P, Ifunanya C. International Journal of Research and Reviews in Pharmacy and Applied science www. ijrrpas. com.

©NIJPP Publications 2025 OPEN ACCESS ONLINE ISSN: 2992-5479 PRINT ISSN: 2992-605X

CITE AS: Ernest Nsubuga (2025). The Dual Burden of Hepatotoxicity and Hormonal Abnormalities in Obesity: Implications for Diabetes and Cardiovascular Risk. NEWPORT INTERNATIONAL JOURNAL OF PUBLIC HEALTH AND PHARMACY,6(3):44-52. https://doi.org/10.59298/NIJPP/2025/634452

Page | 52