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ABSTRACT

Oxidative stress, characterized by an imbalance between reactive oxygen and nitrogen species (ROS/RNS) and
antioxidant defenses, is a central mediator of chronic inflammation. This review explores the mechanistic pathways
linking oxidative stress to sustained inflammatory responses and highlights therapeutic strategies targeting these
pathways. We examine how ROS/RNS influence key inflammatory signaling cascades, including NF-kB, MAPK,
and NLRP3 inflammasome activation, leading to the perpetuation of inflammation in various chronic diseases.
Additionally, we discuss the role of redox-sensitive transcription factors such as Nrf2 in modulating antioxidant
responses and their therapeutic potential. The review also addresses the challenges and opportunities in developing
antioxidant-based therapies, considering the dual role of oxidative species in both promoting and resolving
inflammation. By integrating current research, we provide insights into the complex interplay between oxidative
stress and chronic inflammation, offering a foundation for future therapeutic interventions.
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INTRODUCTION
Oxidative stress is a biochemical condition characterized by an imbalance between the production of reactive oxygen
species (ROS) and reactive nitrogen species (RNS), and the capacity of the body's antioxidant defense mechanisms
to neutralize these reactive molecules [17. Under physiological conditions, ROS and RNS serve essential roles as
signaling molecules involved in the regulation of cellular processes such as proliferation, differentiation, and immune
defense [27]. However, when the generation of these reactive species exceeds the antioxidant capacity, oxidative
stress ensues, leading to molecular damage to lipids, proteins, and DNA. This damage contributes significantly to
cellular dysfunction and the development of various pathologies [87]. Chronic inflammation is a prolonged and
dysregulated immune response that contributes to the pathogenesis of many non-communicable diseases, including
cardiovascular diseases, neurodegenerative disorders like Alzheimer’s disease, diabetes mellitus, chronic kidney
disease, and several types of cancer [47]. A growing body of evidence has established oxidative stress as a central
mediator in sustaining this inflammatory state. ROS and RNS not only cause direct cellular injury but also act as
key signaling molecules that activate various inflammatory pathways. These pathways induce the production of pro-
inflammatory cytokines, chemokines, and adhesion molecules, which perpetuate immune cell recruitment and
activation at sites of injury or infection [5]. One of the primary mechanisms linking oxidative stress and
inflammation is the activation of redox-sensitive transcription factors such as nuclear factor kappa B (NF-kB) and
activator protein-1 (AP-1) [67]. These transcription factors regulate the expression of numerous genes involved in
immune responses and inflammation. Additionally, oxidative stress can activate inflammasomes, such as the NLRP3
complex, which are multiprotein intracellular complexes that regulate the maturation and secretion of pro-
inflammatory cytokines like interleukin-1 [77]. Moreover, mitochondria, a major source of intracellular ROS, play
a critical role in amplifying oxidative stress and inflammatory signaling when dysfunctional [87. Given the central
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role of oxidative stress in driving chronic inflammation, therapeutic strategies targeting this axis hold considerable
promise. However, the dual nature of ROS and RNS, as both essential signaling molecules and agents of damage,
poses challenges in designing effective interventions [97. A deeper understanding of the molecular mechanisms by
which oxidative stress modulates inflammation is essential to identify novel therapeutic targets and develop precise
treatments that can restore redox balance without impairing necessary immune functions [107]. This review aims
to provide a comprehensive overview of the mechanistic insights into oxidative stress-mediated chronic
inflammation and discuss emerging therapeutic approaches targeting these pathways.
Mechanisms Linking Oxidative Stress to Chronic Inflammation
Oxidative stress contributes to chronic inflammation through several interconnected molecular and cellular
mechanisms [117]. At the core of these processes is the generation of reactive oxygen species (ROS) and reactive
nitrogen species (RNS), which function as signaling molecules but can also cause tissue damage when present in
excess [127]. One key mechanism involves the activation of inflammatory signaling pathways, notably the nuclear
factor kappa B (NF-kB) pathway. ROS can activate NF-kB by inducing the degradation of its inhibitory protein IkB,
allowing NF-kB to translocate into the nucleus and promote the transcription of pro-inflammatory cytokines,
chemokines, and adhesion molecules [187. This cascade amplifies immune cell recruitment and sustains
inflammation in affected tissues.
In addition to NIF-kB, the mitogen-activated protein kinase (MAPK) pathway is sensitive to redox changes and
contributes to inflammatory gene expression. MAPKs regulate a variety of cellular responses, including cytokine
production, cell survival, and apoptosis, which are often dysregulated in chronic inflammation [147. Another
important mechanism is the activation of the NLRP3 inflammasome, a multiprotein complex that senses cellular
stress signals, including those generated by oxidative stress. Activation of the NLRP3 inflammasome leads to the
cleavage and secretion of pro-inflammatory cytokines interleukin-13 (IL-1f) and interleukin-18 (IL-18), which
turther drive inflammation [157.
Mitochondrial dysfunction is another critical contributor to oxidative stress-induced inflammation. Mitochondria
are a major source of ROS, and when damaged, they release damage-associated molecular patterns (DAMPs) such
as mitochondrial DNA into the cytoplasm, which can activate pattern recognition receptors (PRRs) on immune cells,
further promoting inflammatory signaling [167. The interplay between oxidative stress, mitochondrial dysfunction,
and immune activation creates a vicious cycle that perpetuates chronic inflammation [177]. Collectively, these
mechanisms highlight the central role of redox imbalance in promoting and maintaining inflammatory states.
Understanding these pathways offers important opportunities for therapeutic intervention aimed at disrupting this
cycle and restoring tissue homeostasis.
Modulation of Redox-Sensitive Transcription Factors
Redox-sensitive transcription factors play crucial roles in regulating the balance between oxidative stress and
inflammation [187]. Among these, nuclear factor kappa B (NF-kB) and nuclear factor erythroid 2-related factor 2
(Nrf2) are the most extensively studied and serve as master regulators of inflammatory and antioxidant responses,
respectively [197.
NF-kB is a family of transcription factors that regulate genes involved in immune responses, inflammation, cell
proliferation, and survival. Under basal conditions, NF-kB remains inactive in the cytoplasm bound to inhibitory
proteins called IkBs [207]. Oxidative stress induces phosphorylation and degradation of IkBs, allowing NF-kB to
translocate to the nucleus and initiate the transcription of numerous pro-inflammatory cytokines such as tumor
necrosis factor-alpha (TNF-a), interleukin-6 (IL-6), and interleukin-1f (IL-1B) [217. This redox-sensitive
regulation of NF-kB enables ROS and RNS to modulate inflammatory responses directly.
In contrast, Nrf2 serves as a protective transcription factor that orchestrates the cellular antioxidant defense system.
Under normal conditions, Nrf2 is sequestered in the cytoplasm by Kelch-like ECH-associated protein 1 (Keap1),
which targets it for proteasomal degradation. Oxidative stress modifies cysteine residues on Keap1, leading to Nrf2
stabilization and its translocation into the nucleus [227]. Once inside the nucleus, Nrf2 binds to antioxidant response
elements (AREs) in the promoter regions of genes encoding detoxifying and antioxidant enzymes, including
glutathione S-transferase, heme oxygenase-1, and superoxide dismutase [237]. Activation of Nrf2 thus enhances
cellular capacity to neutralize ROS/RNS and mitigate oxidative damage.
The interplay between NIF-kB and Nrf2 pathways is complex and often antagonistic [247]. While NF-kB promotes
inflammation, Nrf2 activation tends to suppress it by reducing oxidative stress and limiting the inflammatory
stimulus [257. Dysregulation of this balance contributes to chronic inflammatory diseases, making these
transcription factors promising targets for therapeutic intervention aimed at restoring redox homeostasis and
resolving inflammation [267].
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Mitochondrial Dysfunction and Cellular Damage
Mitochondria are vital organelles responsible for energy production and cellular metabolism, but they also play a
significant role in generating reactive oxygen species (ROS) during oxidative phosphorylation [277]. Under
physiological conditions, mitochondrial ROS serve as signaling molecules; however, mitochondrial dysfunction leads
to excessive ROS production, which can damage mitochondrial components and propagate oxidative stress [287].
When mitochondria become dysfunctional, they release damage-associated molecular patterns (DAMPs), such as
mitochondrial DNA (mtDNA), cardiolipin, and mitochondrial transcription factor A (TFAM), into the cytosol [297].
These DAMPs activate innate immune receptors, including Toll-like receptors (TLRs) and the NLRP3
inflammasome, triggering inflammatory responses. This release not only signals cellular distress but also promotes
the recruitment and activation of immune cells, sustaining chronic inflammation [307].
Furthermore, mitochondrial dysfunction impairs ATP production, resulting in an energy deficit that compromises
cell survival and repair mechanisms [317]. The accumulation of damaged mitochondria can also initiate apoptotic or
necrotic cell death pathways, releasing intracellular contents that exacerbate inflammation [327].
The interplay between mitochondrial damage and oxidative stress forms a self-amplifying cycle: mitochondrial ROS
cause further mitochondrial damage, which leads to increased ROS release and inflammation [837. This vicious
cycle is implicated in the pathogenesis of many chronic inflammatory diseases, including neurodegenerative
disorders, metabolic syndrome, and cardiovascular disease [34].
Targeting mitochondrial dysfunction to reduce ROS generation, improve mitochondrial quality control through
mitophagy, and block DAMP release represents a promising therapeutic avenue [357]. Pharmacological agents that
support mitochondrial function or scavenge mitochondrial ROS are currently under investigation for their potential
to break this cycle and ameliorate chronic inflammation [367].
CONCLUSION
Oxidative stress is a fundamental driver in both the initiation and maintenance of chronic inflammation, acting
through multiple interconnected molecular pathways that disrupt cellular homeostasis and promote sustained
immune activation. The intricate interplay between reactive oxygen and nitrogen species, redox-sensitive signaling
cascades, and mitochondrial dysfunction creates a vicious cycle that perpetuates tissue damage and inflammatory
responses. Understanding these mechanistic links has significantly advanced our knowledge of how chronic
inflammatory diseases develop and progress. Importantly, this insight opens new avenues for the design of targeted
therapeutic interventions aimed at restoring redox balance, modulating inflammatory signaling, and protecting
mitochondrial function. While challenges remain-such as the dual roles of reactive species in physiological and
pathological processes-ongoing research continues to refine strategies that can selectively mitigate harmful
oxidative stress without compromising essential immune functions. Future studies and clinical trials will be crucial
to translating these findings into safe and effective treatments that improve outcomes for patients suffering from
chronic inflammatory disorders.
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