Open Access Print ISSN: 2992-6114 Online ISSN: 2992-5770

# NEWPORT INTERNATIONAL JOURNAL OF CURRENT ISSUES IN ARTS AND MANAGEMENT (NIJCIAM)

Volume 6 Issue 3, 16-20, 2025

Page | 16

https://doi.org/10.59298/NIJCIAM/2025/6.3.1620

## Socioeconomic Factors and Malaria Vulnerability: How Environmental Changes Disproportionately Affect Low-Income Communities

### Sarah Sachar

Humanities Education Kampala International University Uganda

Email sarah.achar@studmc.kiu.ac.ug

#### **ABSTRACT**

Malaria remains a significant public health challenge, especially in low-income regions where socioeconomic and environmental vulnerabilities intersect. This review examines how socioeconomic factors such as poverty, inadequate housing, limited access to healthcare, low educational attainment, and weak infrastructure amplify malaria vulnerability. Furthermore, it explores how environmental changes, including climate variability, deforestation, urbanization, and agricultural expansion, disproportionately affect impoverished communities. These changes often lead to increased breeding grounds for Anopheles mosquitoes, extended transmission seasons, and strained public health systems. The review highlights the need for integrated approaches that address both environmental management and socioeconomic development, emphasizing the role of community engagement, education, and sustainable policy interventions in reducing malaria risk among the most vulnerable populations. **Keywords:** Malaria, socioeconomic factors, environmental change, poverty, climate variability, housing, deforestation, urbanization, health equity, vector-borne diseases

## INTRODUCTION

Malaria remains one of the most persistent and deadly infectious diseases globally, with the heaviest burden borne by sub-Saharan Africa. It is caused by *Plasmodium* parasites, primarily *P. falciparum* and *P. vivax* and is transmitted through the bites of infected female Anopheles mosquitoes [1]. Despite decades of intervention, malaria continues to exert a significant toll on global health, development, and economic productivity. According to the World Health Organization (WHO), there were an estimated 249 million malaria cases and 608,000 deaths globally in 2022, with over 94% of these occurring in Africa [2]. Children under five and pregnant women are particularly vulnerable, highlighting the intersection between malaria and structural inequalities in access to healthcare, nutrition, and protective measures. While malaria is biologically caused by parasites and vectors, its epidemiology is deeply influenced by environmental and socioeconomic factors. Ecologically, malaria transmission thrives in tropical and subtropical climates, particularly in areas with high humidity, rainfall, stagnant water, and warm temperatures all of which facilitate the breeding and survival of Anopheles mosquitoes [3]. However, environmental suitability alone does not determine malaria risk; human exposure and vulnerability are mediated by socioeconomic conditions such as poverty, education, housing quality, sanitation, healthcare access, and employment status [4]. Populations living in informal settlements, rural areas, or flood-prone environments often lack proper drainage systems and protective infrastructure, increasing their exposure to mosquito bites. Limited access to preventive tools like insecticide-treated nets (ITNs), indoor residual spraying (IRS), antimalarial medication, and healthcare services further exacerbates their risk [5]. In many malaria-endemic regions, these conditions are compounded by systemic underdevelopment, political instability, climate variability, and inadequate public health investment. In countries such as Uganda, Nigeria, Tanzania, and the Democratic Republic of Congo which collectively account for nearly half of global malaria cases malaria is not just a health issue but a manifestation of broader development challenges. Climate change, rapid urbanization, population displacement, and economic inequality are reshaping malaria transmission patterns, with

Open Access Print ISSN: 2992-6114 Online ISSN: 2992-5770

new outbreaks emerging in areas previously considered low-risk [6]. Efforts to control and eventually eliminate malaria require more than biomedical interventions. An integrated approach that accounts for the environmental context and socioeconomic realities of affected communities is essential. Understanding the interplay between socioeconomic status and environmental risk factors can help tailor interventions that are context-specific, equitable, and sustainable [7]. Despite widespread implementation of malaria control strategies, such as ITNs distribution, IRS, mass drug administration, and health education, the disease remains endemic in many parts of the world, particularly in sub-Saharan Africa. One major limitation of current interventions is their failure to fully account for the social determinants of malaria transmission. Existing programs often adopt a "one-size-fits-all" model, without considering how poverty, housing, occupation, and access to health services affect exposure, prevention behavior, and treatment-seeking [8]. The current gap in understanding how socioeconomic conditions interact with environmental risk factors hinders the development of targeted and equitable malaria interventions. While studies have investigated climate-related factors such as rainfall and temperature in malaria transmission, fewer have integrated these with socioeconomic indicators to explore their combined effect. Consequently, policies and programs may fall short in addressing the needs of the most vulnerable populations, perpetuating cycles of infection, poverty, and underdevelopment [9]. There is an urgent need to investigate the relationship between socioeconomic status and environmental risk factors for malaria transmission, particularly in high-burden regions. Such research would inform the design of effective, inclusive, and locally appropriate interventions that can break the link between poverty and malaria [10].

This study is designed to bridge the critical gap between environmental epidemiology and social determinants in malaria research by focusing on how these factors jointly influence malaria transmission and vulnerability [11]. The first objective centers on assessing key environmental risk factors such as temperature fluctuations, rainfall patterns, vegetation cover, and the presence of mosquito breeding sites in selected high-burden malaria regions. These environmental elements are essential because they create the ecological conditions favorable for the Anopheles mosquito, the primary malaria vector, to breed and thrive. The second objective evaluates socioeconomic determinants, including income levels, education status, housing quality, occupational exposure, and healthcare access, all of which shape an individual's or community's susceptibility to malaria. Poor housing and limited access to healthcare, for instance, increase risk by reducing protection from mosquito bites and delaying treatment. Thirdly, the study seeks to examine how environmental and socioeconomic factors interact synergistically, influencing not only the incidence but also the severity of malaria infections. Understanding these interactions is crucial because vulnerabilities often arise where adverse environmental conditions coincide with socioeconomic deprivation. Finally, the study aims to provide actionable, context-sensitive recommendations for malaria control strategies that integrate both environmental management and socioeconomic improvements, such as enhancing sanitation, housing, and healthcare infrastructure alongside vector control efforts.

Guided by these objectives, the research addresses key questions: What environmental factors most strongly drive malaria transmission? How do poverty, education, housing, and occupation affect vulnerability? What is the nature of the interplay between environmental and socioeconomic variables in malaria risk? And how can control programs holistically address both dimensions? The significance of this study lies in its interdisciplinary approach, offering insights that extend beyond traditional biomedical interventions. It informs public health by highlighting targeted interventions for high-risk populations, such as those living in informal settlements near stagnant water bodies, where poor drainage and inadequate net coverage amplify risk. Policymakers and donors can use the findings to craft malaria control programs that go beyond technical fixes and tackle underlying social and environmental causes. Additionally, the research emphasizes the role of poverty alleviation, education, infrastructure development, and climate resilience in malaria elimination, positioning the disease as an indicator of broader socioeconomic progress. Academically, this study encourages collaboration across environmental science, economics, sociology, epidemiology, and public health disciplines to address vector-borne diseases in a holistic manner. Ultimately, it underscores that effective malaria control requires nuanced understanding and integrated action on the intertwined environmental and socioeconomic factors sustaining transmission, particularly in sub-Saharan Africa and other endemic regions.

## Socioeconomic Determinants of Malaria Vulnerability

Socioeconomic determinants play a critical role in shaping vulnerability to malaria, particularly among marginalized and low-income populations. Poverty severely limits access to key preventive measures like insecticide-treated nets (ITNs), indoor residual spraying (IRS), and effective antimalarial treatments [12]. Families living in poverty often reside in poorly constructed homes with open eaves, inadequate sanitation, and limited protective barriers, increasing their exposure to mosquito vectors. Economic hardship also confines many to high-transmission environments, such as agricultural fields, mining camps, and overcrowded informal settlements, where the risk of infection is heightened. Education levels further influence malaria vulnerability; low educational attainment often results in poor understanding of transmission dynamics and prevention strategies. This lack of awareness contributes to delays in seeking treatment, inconsistent adherence to medication, and underuse of protective

Page | 17

Open Access

©NIJCIAM
Publications

Open Access
Print ISSN: 2992-6114
Online ISSN: 2992-5770

interventions. Compounding these issues is the limited access to healthcare infrastructure in marginalized communities. Geographic isolation, insufficient health facilities, scarcity of trained personnel, and prohibitive treatment costs delay timely diagnosis and care, worsening health outcomes. Moreover, substandard housing conditions lacking screened windows or sealed roofs facilitate mosquito entry, and overcrowded living spaces exacerbate transmission risk, especially in peri-urban slums and rural regions. Collectively, these intertwined socioeconomic factors significantly elevate malaria vulnerability, underscoring the need for integrated interventions addressing poverty, education, housing, and healthcare access [13].

## **Environmental Changes and Disproportionate Impact on Low-Income Communities**

Environmental changes have disproportionately impacted low-income communities, exacerbating their vulnerability to diseases like malaria. Climate variability and change manifested through fluctuations in temperature, rainfall, and humidity directly affect the mosquito life cycle and the development rate of malaria parasites [14]. As climate change expands the geographic and seasonal range of malaria transmission, impoverished communities with limited resources and adaptive capacity face heightened risks. Deforestation and land use changes, often driven by agriculture, logging, and infrastructure projects, further alter local ecosystems by creating new mosquito breeding sites. These activities frequently occur near or within low-income settlements, where environmental regulations and monitoring are weak, intensifying exposure. Additionally, rapid urbanization in developing countries has led to the proliferation of informal settlements characterized by poor drainage, inadequate waste management, and stagnant water ideal conditions for mosquito breeding. The urban poor living in these areas consequently experience elevated malaria risks. Agricultural practices, including irrigation schemes, rice paddies, and water reservoirs, also contribute to mosquito proliferation. Subsistence farmers, typically from poorer households, are often the first to encounter these increased risks and are least equipped financially or structurally to implement effective protective measures. Together, these environmental and socioeconomic factors create a complex web of vulnerability that disproportionately burdens low-income communities with malaria risk [15].

## **Intersecting Risks: Compounding Vulnerabilities**

The intersection of socioeconomic deprivation and environmental stressors creates a complex web of compounding vulnerabilities that disproportionately affect marginalized communities. Low-income populations often reside in areas prone to environmental hazards, such as floodplains or informal settlements lacking adequate infrastructure [16]. During extreme weather events like floods, these communities face heightened risks of displacement, loss of shelter, and exposure to unsanitary conditions that foster the spread of disease vectors, such as mosquitoes and waterborne pathogens. This increased exposure significantly raises the likelihood of outbreaks of diseases including malaria, cholera, and other diarrheal illnesses. Additionally, weak governance and inadequate policy frameworks frequently result in these vulnerable populations being overlooked in emergency response and public health interventions. The absence of targeted support exacerbates existing inequalities, trapping these communities in a persistent cycle of neglect, poor health outcomes, and socioeconomic hardship. Addressing these intersecting risks requires integrated, inclusive approaches that combine environmental resilience with social protection and health equity initiatives [17].

### **Policy Implications and Recommendations**

To effectively reduce malaria vulnerability among low-income populations, a multifaceted and integrated approach is essential. Strengthening primary healthcare systems forms the foundation of this strategy by improving access to timely diagnostics, effective treatment, and preventive services in underserved and remote areas [18]. This ensures early detection and reduces disease severity, especially among vulnerable groups. Investing in education and health literacy is equally crucial, with malaria awareness campaigns tailored to local cultural and social contexts, enabling communities to recognize symptoms promptly and adopt preventive behaviors. Furthermore, promoting climateresilient infrastructure such as improved housing designs and efficient drainage systems can significantly reduce human exposure to mosquito vectors by limiting their breeding sites and entry points. Incorporating environmental management into malaria control efforts is also vital; this involves regulating land use to prevent vector proliferation, adopting eco-friendly vector control measures that minimize environmental harm, and continuously monitoring environmental changes that may affect malaria transmission dynamics [19]. Lastly, empowering communities by actively involving local stakeholders in the design, planning, and implementation of malaria control programs fosters a sense of ownership and sustainability. Community engagement ensures that interventions are culturally appropriate, widely accepted, and effectively maintained, ultimately enhancing the long-term success of malaria reduction efforts among economically disadvantaged populations.

#### **CONCLUSION**

This review highlights the profound ways socioeconomic factors and environmental changes intersect to disproportionately increase malaria vulnerability among low-income communities. Poverty, inadequate housing, limited healthcare access, and low education levels intensify exposure to malaria vectors and hinder timely prevention and treatment. Concurrently, environmental shifts such as climate variability, deforestation, urbanization, and agricultural development create more favorable conditions for mosquito breeding and malaria

Page | 18

Open Access

©NIJCIAM
Publications

Print ISSN: 2992-6114
Online ISSN: 2992-5770

transmission, particularly in marginalized settings. These overlapping risks deepen health inequities and perpetuate cycles of disease and poverty. Effective malaria control thus requires integrated, context-specific strategies that address both social determinants and ecological drivers. Strengthening primary healthcare, improving health literacy, promoting climate-resilient infrastructure, and implementing environmentally sound vector management are critical components. Equally important is empowering communities through participatory approaches that foster ownership and cultural relevance. By adopting holistic interventions that bridge health, environment, and socioeconomic development, policymakers and stakeholders can advance malaria reduction efforts equitably. Ultimately, addressing these intertwined factors is essential for breaking the persistent cycle of malaria vulnerability among the most disadvantaged populations.

Page | 19

#### REFERENCES

- 1.Adeyemo, A.O., Aborode, A.T., Bello, M.A., Obianuju, A.F., Hasan, M.M., Kehinde, D.O., Hossain, M.S., Bardhan, M., Imisioluwa, J.O., Akintola, A.A.: Malaria vaccine: The lasting solution to malaria burden in Africa. Annals of Medicine and Surgery. 79, 104031 (2022). https://doi.org/10.1016/j.amsu.2022.104031
- 2.Malaria in Uganda: Statistics & Facts | Severe Malaria Observatory, https://www.severemalaria.org/countries/uganda
- 3.Kungu, E., Inyangat, R., Ugwu, O.P.C., Alum, E. U. (2023). Exploration of Medicinal Plants Used in the Management of Malaria in Uganda. NEWPORT INTERNATIONAL JOURNAL OF RESEARCH IN MEDICAL SCIENCES 4(1):101-108.<a href="https://nijournals.org/wp-content/uploads/2023/10/NIJRMS-41101-108-2023.docx.pdf">https://nijournals.org/wp-content/uploads/2023/10/NIJRMS-41101-108-2023.docx.pdf</a>
- 4.Atusingwize, E., Deane, K., Musoke, D.: Social determinants of malaria in low- and middle-income countries: a mixed-methods systematic review. Malaria Journal. 24, 165 (2025). https://doi.org/10.1186/s12936-025-05407-5
- 5.Ameyaw, E.K., Kareem, Y.O., Yaya, S.: Individual, community and region level predictors of insecticide-treated net use among women in Uganda: a multilevel analysis. Malaria Journal. 19, 337 (2020). https://doi.org/10.1186/s12936-020-03412-4
- 6.Egwu, C. O., Aloke, C., Chukwu, J., Agwu, A., Alum, E., Tsamesidis, I, et al. A world free of malaria: It is time for Africa to actively champion and take leadership of elimination and eradication strategies. Afr Health Sci. 2022 Dec;22(4):627-640. doi: 10.4314/ahs.v22i4.68.
- 7.Musoke, D., Namata, C., Ndejjo, R., Ssempebwa, J.C., Musoke, M.B.: Integrated malaria prevention in rural communities in Uganda: a qualitative feasibility study for a randomised controlled trial. Pilot and Feasibility Studies. 7, 155 (2021). https://doi.org/10.1186/s40814-021-00894-0
- 8. Ainebyoona, C., Egwu, C.O., Onohuean, H., Echegu, D.A. Mitigation of Malaria in Sub-Saharan Africa through Vaccination: A Budding Road Map for Global Malaria Eradication (2025). Ethiopian Journal of Health Sciences, 2025; 35(3): 205-217.
- 9. Mezieobi, K.C., Ugwu, O.P.C., Uti, D.E., Egba, S.I., Ewah, C.M. Economic burden of malaria on developing countries: A mini review. Parasite Epidemiology and Control.30 (2025), e00435. https://doi.org/10.1016/j.parepi.2025.e00435
- 10. Obeagu, E. I., Alum, E. U., Ugwu, O. P. C. Hepcidin's Antimalarial Arsenal: Safeguarding the Host. NEWPORT INTERNATIONAL JOURNAL OF PUBLIC HEALTH AND PHARMACY. 2023; 4(2):1-8. https://doi.org/10.59298/NIJPP/2023/10.1.1100
- 11. Sadoine, M.L., Smargiassi, A., Liu, Y., Gachon, P., Fournier, M., Dueymes, G., et al.: Differential Influence of Environmental Factors on Malaria Due to Vector Control Interventions in Uganda. Int J Environ Res Public Health. 20, 7042 (2023). https://doi.org/10.3390/ijerph20227042
- 12. Uti, D.E., Ugwu, O.P.C., Egba, S.I., Alum, B.N. (2024). Climate Variability and Malaria Transmission: Unraveling the Complex Relationship. INOSR Scientific Research 11(2):16-22. https://doi.org/10.59298/INOSRSR/2024/1.1.21622
- 13. Armin R., Michele R. R., (2013). Malaria during pregnancy with parasite sequestration in the villous chamber. Blood, the Journal of the American Society of Hematology, 121, (12), 2173-2173. https://doi.org/10.1182/blood-2012-10-465096
- 14. Agu, P. C., Tufail, T., Akinloye, D. I., & Obaroh, I. O. (2024). Malaria pervasiveness in Sub-Saharan Africa: Overcoming the scuffle. *Medicine*, 103(49), e40241. doi: 10.1097/MD.0000000000040241. PMID: 39654176
- 15. Alum, E. U. (2024). Phytochemicals in Malaria Treatment: Mechanisms of Action and Clinical Efficacy. KIU J. Health Sci., 4(2):71-84. https://doi.org/10.59568/KJHS-2024-4-2-06.
- 16. Emeka-Obi O. R, Obeagu E. I, Obeagu G, U, Egba S. I, (2023). Combatting Anaemia in Paediatric Malaria: Effective management strategies Int. J. Curr. Res. Med. Sci. (2023). 9(11): 1-7
- 17. Emmanuel I. N., Ani. O. C., Ugwu F. J., Egba S. I., Aguzie I. O., Okeke O. P., Dialoke C. E., Asogwa L. O., Odo S. I. (2020) Malaria Prevalence in Rice Farm Settlements South East Nigeria. IJTDH, 41(9): 64-74

Open Access
©NIJCIAM
Publications

Open Access
Print ISSN: 2992-6114
Online ISSN: 2992-5770

18. Obeagu, E.I., Obeagu, G.U.: Emerging public health strategies in malaria control: innovations and implications. Ann Med Surg (Lond). 86, 6576–6584 (2024). https://doi.org/10.1097/MS9.00000000000002578

19. Olubunmi A., Faoziyat A. S, Abdulmumeen A. H, Azeezat A., Abraham C A., Oloriegbe S, et al (2021). In pursuit of new anti-malarial candidates: novel synthesized and characterized pyrano-benzodioxepin analogues attenuated Plasmodium berghei replication in malaria-infected mice. Heliyon, 7, (12), 8523.DOI:https://doi.org/10.1016/j.heliyon.2021.e08517

Page | 20

CITE AS: Sarah Sachar (2025). Socioeconomic Factors and Malaria Vulnerability: How Environmental Changes Disproportionately Affect Low-Income Communities. NEWPORT INTERNATIONAL JOURNAL OF CURRENT ISSUES IN ARTS AND MANAGEMENT, 6(3):16-20 <a href="https://doi.org/10.59298/NIJCIAM/2025/6.3.1620">https://doi.org/10.59298/NIJCIAM/2025/6.3.1620</a>