NEWPORT INTERNATIONAL JOURNAL OF BIOLOGICAL AND APPLIED SCIENCES (NIJBAS)

Volume 6 Issue 2 Page 93-102, 2025

Page | 93

https://doi.org/10.59298/NIJBAS/2025/6.2.93102

Industrial Microbiomes and Synthetic Consortia for Enhanced Bioprocesses

Chukwudi Anthony Ugwuanyi

Department of Applied Microbiology Ebonyi State University Nigeria Email:ugwuanyitony@gmail.com

ABSTRACT

Industrial microbiomes and synthetic microbial consortia are emerging as powerful tools for advancing sustainable bioprocesses. Unlike monocultures, these systems exploit natural microbial diversity and engineered interactions to enhance stability, resilience, and productivity. Applications include biofuel generation, waste valorization, pharmaceuticals, and environmental remediation. Advances in synthetic biology, systems biology, and computational modeling are driving the design of robust microbial communities tailored for industrial use. However, challenges such as population control, limited knowledge of microbial interactions, and regulatory hurdles remain. Addressing these issues will enable the development of next-generation microbiomes that are scalable, efficient, and environmentally sustainable.

Keywords: Industrial microbiomes; Synthetic microbial consortia; Bioprocess engineering; Synthetic biology; and Sustainable biotechnology.

INTRODUCTION

An industrial microbiome is a microbiome not associated with a human host but with a product or a process that is the objective of the industry and harbours the possibility of improved efficiency and a smaller ecological footprint. Similarly, a synthetic microbiome is a synthetic community with an industrial objective, goals that include increased resilience and efficiency. These communities and synthetic communities can be purposeful designed and the design is increasingly informed by community ecology and community systems biology. For example, industrial microbiomes improve production processes and at the same time help reduce carbon or nitrogen emissions, reduce energy consumption, help treat waste streams and facilitate access to nutrients. Synthetic biology allows scientists to design and construct new biological parts, devices and systems or to re-design existing, natural biological systems for useful purposes. The prospect of a biotechnology based on engineered microbes offers a significant opportunity to help address many of the environmental and economic challenges faced by our society. Synthetic biology has the potential for profound economic and social benefits, including new medicines and diagnostics, energy security, sustainable manufacturing and food security. Microbial production of biofuels, pharmaceuticals, food additives and alternative materials often rely on a metabolically engineered platform organism at their core. However, engineering of a single microbial species to simultaneously accomplish tasks such as complex substrate utilization, product synthesis and stress tolerance remain exceptionally challenging Design, analysis and application of synthetic microbial consortia. An industrial microbiome is a microbiome not associated with a human host but with a product or a process that is the objective of the industry and harbours the possibility of improved efficiency and a smaller ecological footprint. Similarly, a synthetic microbiome is a synthetic community with an industrial objective, goals that include increased resilience and efficiency. These communities and synthetic communities can be purposeful designed and the design is increasingly informed by community ecology and community systems biology. For example, industrial microbiomes improve production processes and at the same time help reduce carbon or nitrogen emissions, reduce energy consumption, help treat waste streams and facilitate access to nutrients [1].

NIJBAS **Publications 2025** ONLINE ISSN: 2992-5797 PRINT ISSN: 2992-6122

Understanding Microbiomes

Microbial systems are omnipresent, colonizing diverse habitats including soil, animal and plant bodies, and human body surfaces. They play significant roles in natural processes and are vital to human life. In the environment, microorganisms facilitate critical processes such as degradation, nitrification, denitrification, photosynthesis, methane oxidation, and decomposition, profoundly impacting the quality of air, water, and soil [1, 2]. These functions confer ecological and industrial value to microbiomes. A microbiome is defined as a community of microorganisms including bacteria, viruses, fungi, archaea and their diverse molecular products, residing within a Page | 94 particular environment. In nature, microbiomes serve as fundamental drivers of ecosystem functions, sustaining biogeochemical cycling and maintaining the health of macro-organisms and plants. Although microbiomes consist of various microbes, bacteria often dominate; for example, species belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria are frequently detected across samples. Variations among microbiomes reflect differences in habitat environments [1.7] Furthermore, microbiomes associate closely with plants, animals, and humans, being essential for host health and well-being [2].

Definition and Importance

Microbial communities, microbiomes are at the centre of almost every activity on Earth, including all processes used in industrial biotechnology. A microbiome is a diverse community of interacting microbial species that colonize nearly every environment, system or organ. The wide range of resident species and their relative abundances shape community properties and can be linked directly to microbiome functionality; for instance, species linked to methane and carbon dioxide production may suggest a functional role in carbon cycling and greenhouse gas emissions [2]. Microbiomes harbour a wide collection of microorganisms with a great variety of biological activities and potential uses, providing the foundation for biotechnological manipulations. Industrial processes already rely on microbial consortia to support a variety of operations, spanning the production of food and beverages and industrial chemicals to bioremediation and waste treatment. Synthetic biology provides key concepts to establish the rationale underpinning the design of synthetic microbial consortia [2]. A synthetic microbial consortium is an artificial system wherein multiple microbial populations derive collective benefits from their coexistence. The portfolio of interactions among members of synthetic microbial consortia can establish complex interdependent relationships that enable exchange of information and metabolites, and division of labour for desired biotechnological applications, traits that can be exploited to address climate change, food production and environmental concerns [1]. The precision engineering of synthetic microbial consortia has emerged as a promising strategy for enhancing the efficiency, robustness and productivity of many biotechnological processes

Microbial Diversity

Microbiomes are assemblages of microbes sharing living space or habitat. They are found everywhere in nature: soil, ocean, the human gut, and many more. There are around ten thousand microbial species occupying every niche on Earth. Human-associated microbiomes are the result of coevolution over millennia. They provide many of the biomolecules that make up humans themselves, and their symbiotic relationship with their human hosts offers a commanding advantage over invading parasites [1]. Microbiomes collectively comprise an array of microhabitats that provide a niche space for microbial growth. To be able to classify the microbial diversity within this microbiome, it is crucial to understand what microbiomes are. Communities are persistence-competitive groups of organisms while microbiomes constitute trophic groups [2]. Hence, the extent to which microbiomes compete amongst themselves can be inferred based on their trophic functions. Microbial communities can assemble because of metabolic cross-feeding and hence different microbiomes also are connected through a network of trophic interactions. When a microbial community is endowed with metabolic functions, it will have access to a wider diversity of substrates for biomass incorporation. As a result, it can sustain a larger number of microbial species and at the same time display a higher level of functional diversity. Having a larger spectrum of functional capabilities and a wider diversity of substrates to be metabolized, the community is likely to deplete a large variety of resources and become a more efficient assembler [1, 2].

Functionality in Ecosystems

Apart from taxonomic cataloging, substantial efforts seek to elucidate microbiome operational principles and associated ecosystem functions. Microbial communities generate collective activities unattainable by a single species, with microbiomes supporting critical processes such as biogeochemical cycling of nitrogen, carbon, and other elements. Communities maintain diverse ecological functions under temporal and spatial fluctuations, preserving overall ecosystem performance despite compositional instability [1]. Microbial consortia groups exhibit functional complementarity historically instrumental in the transition from complex to reduced atmospheres conducive to multicellular diversification. Functional dimensions offer a quantitative and dynamic hologenomic organizational framework, applicable at varied microbial community topological scales [2]. This concept yields a measurable ecosystem property endorsing comprehensive surveillance strategies.

NIJBAS ONLINE ISSN: 2992-5797 **Publications 2025** PRINT ISSN: 2992-6122

Synthetic Biology Fundamentals

Microorganisms and microbiomes constitute precious resources in the development of renewable energy, biopharmaceuticals, and the agriculture industry. The use of engineered microorganisms for enhanced bioprocessing continues to receive significant scientific and technological attention, enabling the design of synthetic consortia with increased metabolic efficiency and product yield. Microbiomes represent a collection of microorganisms that exist in an ecological community, providing important reservoirs of efficient microbial metabolism to accomplish various industrial processes [2]. In particular, synthetic consortia can accommodate Page | 95 complex substrates to generate several end-products, with engineered organisms converting the extended polymers of a substrate and regulating the solubilized products via quorum sensing [2]. Monomeric products from substrate hydrolysis serve as fuels for organisms that perform division of labor, and specific organisms recycle materials to improve economic feasibility. The design of industrial microbiomes with enhanced bioprocessing features depends on a consideration of the underlying synthetic biology fundamentals.

Principles of Synthetic Biology

The ability to build new microbial strains whose function is reliably controlled is the defining characteristic of synthetic biology; the field therefore rests on the development of principles and strategies for engineering these traits, and on chassis that allow for their implementation [2]. Strains may be built with the intended purpose of studying and even discovering fundamental design principles of living systems or else to carry out a particular task with a demand for high efficiency or specific environmental conditions. The two are not mutually exclusive, and the relevance of one to the other is a common theme in synthetic biology. Although advancement in any of these pursuits is valuable in its own right, the prospect of engineering considerable microbially mediated changes to our environment alongside the implementation of industrial-scale systems, such as the bioremediation of climate gas, rational measurable design will only increase in importance as the scale and ambition of applied synthetic systems grows [4].

Engineering Microbial Strains

Industrial microbiomes and synthetic consortia constitute promising avenues for enhanced bioprocess engineering. Industrial microbiomes participate actively in the production of biomass feedstock, valuable chemicals, and pharmaceuticals [1]. They facilitate the conversion of complex raw materials into desirable end-products [5]. Their catalytic features may also be exploited for biomass pretreatment and bioremediation of polluted sites. Synthetic biology research has developed modular frameworks for the engineering of individual microbial strains. An alternative to individual cell design is to engineer microbial consortia [6]. Synthetic consortia consist of populations of interacting microbes with specialized tasks. Harnessing and engineering natural microbial communities offers a complementary approach to strain-by-strain optimization. Synthetic biology research has established modular frameworks for the engineering of individual microbial strains. With respect to bioprocess efficiency and sustainability, however, an alternative to individual-strain design is to engineer microbial consortia. Synthetic consortia consist of populations of interacting microbes with specialized tasks. The large chemical diversity of natural products provides ample biomass building blocks for the generation of several classes of chemicals. Harnessing and engineering natural microbial communities, therefore, offers a promising complementary approach to strain-by-strain optimization.

Role of Microbiomes in Industry

Natural microbial communities are employed at an industrial scale in processes such as activated sludge for wastewater treatment and various forms of anaerobic digestion [7]. It is therefore logical to test whether the natural approach can be enhanced through controlled laboratory manipulation. Indeed, a strong argument supports focusing on communities as stable, robust enzyme-secreting living entities. Yet purely natural communities may not possess a well-balanced set of microbes, some of which may be less experimentally tractable, less well studied, or pathogenic. In these cases, the rationale applies to hybrid communities that combine natural members with synthetic or genetically engineered species. To produce a well-balanced set of microbes, with an experimentally tractable genomic toolkit, natural communities can be analysed by proteomics to identify the key secreted enzymes, and those enzymes coupled to their originating species. The natural strains can then be isolated or replaced by more tractable substitutes, leaving the enzyme distribution broadly similar to the observed pattern from the natural microbiome [1]. Appropriate environmental conditions and inoculation protocols also need to be defined to maintain stable coexistence of the selected species [2]. A wide range of environments have been investigated to identify sources of candidate strains for co-cultures and consortia, including soils, compost, leafcutter-ant fungal gardens, ruminant gut, human gut, pulp and paper mill wastewater, and biomass-crop sludge reactors.

Bioprocess Optimization

Industrial microbiomes and synthetic consortia present an alternative to conventional bioprocesses by incorporating the interactions between species in a microbial community. Microbial communities offer a natural

OPEN ACCESS

NIJBAS ONLINE ISSN: 2992-5797
Publications 2025 PRINT ISSN: 2992-6122

platform for sustainable bioconversion of renewable feedstocks and a robust model for designing a versatile solution to future-generation bioprocesses [1, 2]. The recent advances in metagenomics, meta-transcriptomics, and meta-proteomics that unravel the diversity of these natural communities of microbes have not only helped to understand the community profile but also paved a way to the creation of novel microbial assemblages engineered based on function. The emerging discipline of synthetic biology provides new tools and frameworks to enable the design and construction of novel biological parts, devices, and systems and the chassis to host them. Harnessing the power of synthetic biology enables the tailoring of metabolic pathways and interactions in microbial communities for highly productive bioprocesses [1]. Contamination control is a major challenge for all industrial bioprocesses, often necessitating an emphasis on using pure cultures in sterile reactors. Contamination control requires maintaining certain critical environmental parameters dedicated for the optimum growth of the inoculated microbe [2]. The engineering of a synthetic consortium could tolerate a unique set of environmental parameters, thereby controlling contamination. An industrial community with the right combination of synergistic interactions, e.g., by offering cross-feeding or providing resistance, can control contamination, overcome environmental stresses and harsh conditions, increase functional efficiency, and enhance biological activities [2].

Waste Treatment Applications

Waste treatment is a crucial application that can be enhanced by using synthetic microbial consortia [8]. Microbial consortia have been extensively used for the biodegradation of complex substrates and pollutants, as well as for the bioproduction of medicines, biofuels and protein complexes [2]. However, the development of crude wastewater treatment methods in the 1900s with activated sludge and trickling filters led to a general neglect on the study of microbial consortia during most of the 20th century 9. Wastewater treatments are based on the removal of organic matter, nitrogen, phosphorus and suspended solids. The process typically starts with a mechanical removal of solid residues, fats and sands. Secondary biological treatment, such as activated sludge, is subsequently used for the elimination of easily biodegradable organic matter, producing a clarified effluent and sewage sludge containing the microorganisms involved in the organics removal. Biological processes are preferred since they entail reduced operating costs and confer lesser environmental impact, making them the most convenient alternative for wastewater treatment. Improved knowledge of the assembly and function of the microbial communities that inhabit these systems could contribute towards the optimization and increase of the efficiency of the wastewater treatment and sludge digestion [2]. Waste-water treatment plant (WWTP) microbial communities harbour an immense genetic reservoir that may constitute an untapped source of novel functions with biotechnological interest, which integrated omics methodologies promise to reveal. Accurate species compositional and genome-level analyses performed on WWTP microbial communities highlight their functional stability and enable the identification of potential key microbial species and accessory functions instrumental to community operation. Further evaluation and characterization of the microbial populations involved in wastewater processing and effluent purification is crucial, and would greatly improve the management and optimization of the already established WWTP microbial platforms [2, 8].

Bioremediation Strategies

Microbial consortia that combine multiple strains offer enhanced bioremediation for complex organic compounds, representing a promising alternative to traditional methods such as incineration. Synthetic consortia consist of multiple engineered strains that collectively execute metabolic functions more efficiently than individual strains. They efficiently deconstruct complex compounds into bioavailable substrates during the bioremediation of recalcitrant pollutants. Systems designed to distribute catalytic pathways across different strains enable precise and modular degradation of complex compounds [2, 4, 10]. Cross-feeding interactions among strains eliminate pathway feedback inhibition, thereby improving overall degradation rates. Dynamic cellular interactions confer adaptability and stability in challenging environments. These attributes have been successfully exploited in consortia used to degrade plastics, petroleum, antibiotics, azo dyes, and sewage contaminants [10]. The establishment of synthetic consortia benefits from a deep understanding of natural systems and from principles derived through reductionist approaches [4]. Incorporating synthetic control modules within microbial communities provides a means to regulate community behaviour at various scales, including individual cells, subpopulations, and the entire consortium. Such synthetic consortia enable the introduction of complex substrates into bioreactors, facilitating the synthesis of multiple products simultaneously. Components have been engineered to secrete extracellular proteins that covalently conjugate via self-assembling peptide tags, thus supporting complex catalytic functions. Communication strategies based on quorum sensing enable the coordinated division of labour necessary for polymeric substrate degradation [2]. Continued progress relies on improved genome engineering, a deeper mechanistic understanding of natural ecosystems, and development of orthogonal communication channels and metabolic cross-feeding pathways. Realizing these advances will permit the design of stable consortia capable of complex bioproduction, therapeutic implementation, and the execution of collective behaviours.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Page | 96

NIJBAS Publications 2025 ONLINE ISSN: 2992-5797 PRINT ISSN: 2992-6122

Designing Synthetic Consortia

Synthetic microbial consortia comprise a limited number of species designed to improve metabolic efficiency, enhance yield and productivity, and maintain desirable physiological states [1]. Microbial species selection is crucial, and the choice of partners has significant implications for overall performance. When designing synthetic consortia, it is essential that the combined capabilities of the members exceed those of individual constituents, as collective synergy underpins their economic value [2]. Synthetic biology tools enable these consortia to process complex substrates and regulate interactions: engineered organisms degrade polymeric materials and modulate each other's growth through quorum-sensing communication. The hydrolysis of substrates releases monomers that feed distinct members, implementing a division of labor while minimizing competition. Genetic engineering also facilitates the secretion of extracellular proteins that form covalent conjugates, expanding functionality. Future developments anticipate advanced genome editing, orthogonal communication channels, and high-throughput ecosystem studies. However, challenges persist in culturing nonmodel organisms and deciphering metabolic networks to achieve stable, complex behaviours suitable for bioproduction, memory, or therapeutic applications [1, 2].

Concept and Goals

Synthetic microbial consortia consist of cognate individuals from microbiomes that co-operate to improve overall performance. Diverse subdivided populations exhibit preferable properties, including increased environmental tolerances or functionalities that benefit the entire population. As reviewed in the preceding sections Synthetic biology fundamentals, there is an increasing need for novel solutions to sustainably manufacture challenging compounds in an environmentally friendly and economically feasible manner. Synthetic consortia offer the ability to implement such solutions through a combination of specialized, modularized subpopulations [1]. Efficient division of labor can be established within synthetic microbial consortia, which may introduce complex substrates (e.g., lignocellulose and n-alkanes) into a single bioreactor to produce multiple end products [2]. Engineering allows members to regulate their own growth dynamically via quorum sensing and production of difficult-to-hydrolyze substrates. The liberated monomers feed other member strains, which are equipped with appropriate assimilation of each monomer with a sophisticated division of labor. Synthetic consortia remain promising biotechnological platforms capable of improving current bioprocesses [1, 2].

Selection of Microbial Species

The successful design of synthetic microbial consortia relies on the careful selection of member species characterized by specific metabolic and physiological properties. Considerations include substrate preferences, such as whether species utilize sugars or proteins, and oxygen requirements, distinguishing strict aerobes, strict anaerobes, facultative anaerobes, or microaerophiles [8]. Results obtained from pure cultures provide essential information regarding factors such as growth rate, tolerance to particular inhibitors, temperature and pH sensitivity, or photosynthetic activity in photoautotrophs. Further selection influences the mode of cultivation of a consortium, in particular whether species prefer planktonic or biofilm modes, are free-living or particle attached, or grow in suspension or adhere to surfaces [6, 7]. The nature of the inoculum pure cultures (axenic), enrichments, or samples containing mixed communities serves as an additional guide. When interactions between constituent members need to be predetermined, species that affect one another by means of growth rate, metabolism, or other significant parameters should be preferred. When selection is instead left to the species, strain, or consortium level, the criteria usually focus on better performance, desired end products, better reactor stability, or tolerance to environmental conditions. In either case, the initial selection is geared toward the process itself [2, 8].

Interactions and Synergies

Synthetic communities can perform complex tasks beyond the reach of single strains. Cheng et al. (2019) categorized three main consortia types: (a) division of labor specialized strains collaborate; (b) metabolic control one strain fine-tunes the metabolism of another; and (c) communal benefit members share advantages irrespective of individual advantage. Designing a community for a specialized function requires selecting suitable members, identifying their strengths and weaknesses for division of labor, and engineering interaction networks for stable coexistence [1]. Members gain emergent properties through compartmentalization and granularity at levels spanning molecules, genes, proteins, organelles, cells, to populations. Coupled constraints across these levels allow microsystems to pursue goals impervious to natural forces, facilitating the engineered realization of design objectives. Permission, stimulation, and repression signals coordinate shared activities in consortia comprising strains with different genetic parts. These signals modulate gene expression and promote intricate temporal behaviors such as oscillations, cumulative responses, instability, and stripes. Exemplary designs have been achieved through integration of synthetic parts, gene circuits, and diverse interaction methods [1].

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Page | 97

NIJBAS **Publications 2025** ONLINE ISSN: 2992-5797 PRINT ISSN: 2992-6122

Applications of Synthetic Consortia

Synthetic microbial consortia bear significant potential for generating biofuels, pharmaceuticals, and agricultural products. For biofuels, reconstructed consortia enable robust lignocellulose-to-ethanol conversion, utilizing enzymes such as cellulase, xylanase, β-glucosidase, and alcohol dehydrogenase. Adaptive cultures retain multiple species, including Saccharomyces cerevisiae, Zymomonas mobilis, and Lactobacillus bulgaricus, conferring immunity to antibiotics, acids, and other stresses and suggesting suitability for continual processes with minimal contamination risk [1]. In biopharmaceuticals, consortia produce daptomycin via Streptomyces roseosporus and Page | 98 related enzymes from Streptomyces lividans or Escherichia coli. For agriculture, consortia improve banana wilt resistance by increasing phosphate solubilization and indole acetic acid (IAA) production and supplement animal feed through continuous fermentation of raw feedstocks [2].

Biofuel Production

Synthetic biology enables microbial consortia capable of fermenting biomass into diverse fuels and chemicals. A synthetic microbial consortium of S. cerevisiae and a sugar-transport-defective, acetate-consuming mutant of Z. mobilis has been developed for bioethanol production from lignocellulosic feedstocks. Existing methods of acetate removal and detoxification complicate bioethanol production with strategies that allow acetate to be eliminated while maintaining biomass conversion remain limited. Utilizing Additive and Non-Additive Partitioning of the Consortium (ANP), the synergy between S. cerevisiae and Z. mobilis directly condensed acetate to ethanol while converting mixed sugars without unwanted by-products [11]. Synthetic microbial consortium approaches for biofuel production align well with synthetic biology concepts, wherein individual species contribute complementary functions, resulting in a collective phenotype unattainable by any single species [12].

Biopharmaceuticals

Biopharmaceuticals involve using organisms to produce recombinant technologies for therapeutic drugs, including monoclonal antibodies, hormones, enzymes, and vaccines. Generations of single-species bioprocesses have been extensively developed, but today, many high-value biopharmaceuticals remain difficult to produce in existing platforms because of biological limitations [1]. Synthetic microbial consortia can combine the biological advantages of different species and perform tasks reminiscent of the natural community. It was extensively demonstrated that synthetic consortia have enhanced capacity in biopharmaceutical production [2].

Agricultural Enhancements

The intensive use of fertilizers and pesticides, along with high-yielding varieties, has significantly increased crop productivity. However, issues such as soil fertility depletion, soil toxicity, and human health hazards remain unresolved [2]. Exploiting plant growth-promoting bacteria (PGPB) represents an environmentally sustainable alternative to reduce chemical inputs. Commercial bioformulations comprising efficient PGPB strains could promote agriculture in a safer manner. Crop biofertilizers produced using beneficial microbes function differently than chemical fertilizers, not only providing nourishment but also enhancing nutrient availability and improving soil structure [2].

Challenges in Implementation

Microbial consortia face many challenges that must be addressed before they can be widely implemented. Understanding the structure and dynamics of natural complex communities remains incomplete. Engineering orthogonal cell-to-cell signalling with minimal crosstalk is essential, especially as the number of interacting parts grows. Genetically modified consortia produce mutants; strategies to prevent and manage these are critical to maintaining system robustness. Controlling population composition becomes more difficult as populations increase [5]. Tighter control of population ratios will require advances in sensing, inducible signalling, spatial separation, and consideration of metabolite transport [5]. Scaling synthetic applications also encounters technical obstacles. Successful cultivation of non-model organisms is challenging but necessary to broaden expression profiles, gain unique properties, and enable physiological diversity. Decades of work are needed to fully understand microbial traits to fully realize these benefits. Each additional strain increases design and construction time; engineering robust reproducible systems with many strains remains a major hurdle. Further investigation into metabolic crossfeeding pathways would facilitate engineering scalable consortia with improved stability, functionality, adaptability, and tunability [2].

Technical Barriers

In recent decades, synthetic industrial microbiomes have been developed as key strategies to optimize the composition and ecological functions of natural microbiomes [2]. The adoption of synthetic consortia addresses technical barriers encountered with natural-industrial microbiomes, such as long fermentation cycles, low biomass conversion efficiency, and unstable metabolic yields. Successful examples demonstrate reduced fermentation time, enhanced productivity, increased titers, improved metabolic capacities, and improved community stability 1. Under dynamic metabolic interactions and micro-ecological regulations, natural-industrial microbiomes have been exploited for bioremediation, absorbing oil spills, heavy metals, organic wastes, and managing environmental

OPEN ACCESS

NIJBAS ONLINE ISSN: 2992-5797 **Publications 2025** PRINT ISSN: 2992-6122

pollutants. Additionally, integrated microbiome systems have supported a biosecurity system combating pandemics and hazardous chemicals across ecosystems, such as one incorporating influenza A virus, supporting the Host-Microbiome Interaction (HMIC) concept. During viral infection, host microbiomes are altered with increased opportunistic pathogenic bacteria and decreased commensal or beneficial bacteria [1,2,8].

Regulatory Issues

Regulatory agencies face significant increases in applications for commodities produced with synthetic biological strains and systems [2]. These applications include foodstuffs and associated production equipment, chemical Page | 99 feedstocks, fermentation bioreactors, microorganism production and the resultant cultures, cell-processing systems and equipment, and environmental releases used in commodity production or remediation. Institutions such as the U.S. Food and Drug Administration, the Environmental Protection Agency, the European Food Safety Authority, and the International Organization for Standards seek well-founded procedures for assessing and educating applicants, efficiently evaluating submissions, and monitoring field situations throughout the synthetic biology industry. Appropriate metrics, parameter definitions, internally consistent data formats, quantitative limits, validator schemes, and tool sets are critical to building standards that provide the required information with reliability and reproducibility [1, 2].

Public Perception

To gain acceptability in society, synthetic consortia and their products must overcome public perception and concerns. Public perception has prevented proposed synthetic biology applications, such as gene drives in mosquitoes for alleviating malaria or synthetic yeast for extracting artemisinin (a potent antimalarial drug) from artemisia plants. Along with technical and regulatory challenges, social acceptability lies ahead and poses a particularly high hurdle to wide-scale commercial development of synthetic biology applications [13]. Currently, ecological concerns other than those raised by the release of genetically engineered microbes are often overlooked; hence, all possible ecological impacts and species interactions must be predicted and analysed in order to persuade regulators and the public. Addressing problems such as public concern is imperative for fully exploiting industrial microbiomes and synthetic consortia in enhancing bioprocesses [1, 13].

Future Perspectives

The rapid evolution of synthetic biology is yielding new perspectives on industrial microbiomes [1]. Newly designed artificial microbial communities can integrate complex substrates into a single bioreactor, producing diverse end-products. Engineered consortia capable of degrading polymeric substrates that resist single-species metabolism can adjust individual strains' abundances via quorum sensing. Monomers and oligomers derived from extracellular hydrolysis supply strains equipped with division-of-labor strategies for conversion to valued products. Despite the potential, genome engineering tools for non-model organisms are often inadequate relative to well-characterized microbes. Computational frameworks metabolic models, flux balance analysis, multi-agent modeling, and individual-based modeling offer predictive information to aid consortia design. Synthetic biology approaches are expected to provide enhanced control over community properties including composition, spatial organization, metabolite exchange, communication, and cooperative interactions [2, 4]. High-throughput methods such as metaproteomics or metametabolomics facilitate the characterization of microbial consortia at the community level. Establishing orthogonal intercellular communication channels and defining the architecture of metabolic cross-feeding networks can lead to engineering consortia capable of efficient bioproduction, collective memory, murine colitis treatment, and other complex functionalities [2]. A synthetic consortium is an artificially constructed microbial ecosystem designed to maintain the unique advantages of natural microbial communities such as collaborative accommodation, robustness, and efficient metabolism while minimizing their disadvantages. Engineering strains as components enables consortia construction with tailored properties for industrial applications. Under specific environmental and nutritional conditions, cooperative interactions among consortium members drive the system toward desirable behaviours. The consortium approach boasts broad applicability, flexible design, and multifarious functionality. The underlying complexity of the assembly process complicates successful construction. Selection of consortium members and their interactions constitute the foundational principles for systematic design. Insights from natural microbiomes combined with strategies from synthetic biology excel in addressing the challenges of consortia design. Achieving harmony and synergy among community members is paramount for stable coexistence and optimal performance, a concept that underpins progress across natural ecology, environmental science, synthetic biology, and related disciplines [4].

Innovative Approaches

Despite the high industrial relevance of microbial strains, high cell-density cultivations and enhanced yields remain difficult to achieve with monocultures [1, 2]. Recently, the concept of synthetic microbial consortia has received renewed attention, not only due to their ability to enable the degradation of complex substrates or compounds but also to distribute a metabolic burden and thus increase yields [13]. The design of microbial synthetic consortia therefore represents a promising approach to tailor functionality and enhance genetic and

NIJBAS ONLINE ISSN: 2992-5797
Publications 2025 PRINT ISSN: 2992-6122

metabolic capabilities in metabolically engineered microorganisms. Insights into synthetic consortia design can be obtained from natural microbial ecosystems. A suitable proxy for the construction of synthetic consortia is found in microbial communities exhibiting stable coexistence and interspecies interactions, such as commensalism and mutualistic cross-feeding, which emerge during attempts to establish synthetic co-cultures. From an industrial perspective, these highlight the potential of consortia to support stable growth and facilitate the production of compounds such as γ -glutamylated amines. Parallel efforts have shown that synthetic microbial consortia can be employed to achieve effective division of labor, thereby enhancing the overall bioproduction process. Anticipated depends of such approaches led to the exploration of artificial consortia composed of multiple microbial species $\lceil 13 \rceil$.

Page | 100

Integration with AI and Machine Learning

AI and machine learning are well integrated into the design-build-test-learn (DBTL) cycle, thereby effectuating major improvements in synthetic biology and industrial biotechnology. To support this rapid development, cheminformatic software is being developed which allows computer-readable encoding of chemical synthesis procedures, also known as chemical programming [2]. Advances in industrial microbiomes and synthetic consortia will also benefit from this technology. The relative ease of incorporating machine intelligence suggests that rapid advances can be expected when automated high-throughput robots and chemical programming converge. Furthermore, the availability and utilization of large microbiome metagenome data sets is expected to introduce an era of innovation and creativity in electronic design automation and synthetic biology [7].

Case Studies

Synthetic microbial consortia composed of multiple species have attracted substantial attention by taking natural microbial ecosystems as blueprints for design. The concept entails engineering interactions among different microbial communities to form a stable and robust structure [1]. Natural ecosystems have demonstrated stability and adaptability to the external environment, thus it is plausible that synthetic consortia of great complexity can exhibit similar capacities and enhance tolerant performances. Moreover, the choice of synthetic consortia can be wide, including bacteria, fungi and mammalian cells. A typical example is a microbial consortium in which yeast metabolizes glucose to generate a signalling molecule that triggers programmed cell death in human cells. However, such a consortium is found to exhibit only short-lived survival for competition over nutrients [3].

Microfluidic devices offer opportunities to separate the two types of bacteria in a unified culture well, allowing the exchange of small-molecule metabolites through narrow microchannels and enabling long-term co-culture. When cultured at different separation distances, the system reproduces a biodiversity pattern characterized by low richness at both very short and very large separation distances, with a maximum at an intermediate value. The results demonstrate that biodiversity might be controlled through the geometric characteristics of the microhabitat, providing a promising approach for enhancing long-term stability of synthetic consortia. DNA microarray technology has been further applied to unravel the molecular mechanisms governing the observed cooperative interactions. Metabolic responses of each bacterial population in a mixed anaerobic community indicate that the presence of Syntrophus negatively influences Desulfovibrio, resulting in specific gene regulations to oxidative stresses and metabolite transfer. Applications of synthetic consortia cover a wide range of fields such as enhanced biodegradation, biofuel production, bioremediation, and biocontrol. Anaerobic microbial consortia are capable of converting glucose into hydrogen and acetate which can be further used to reduce 2,4,6-tribromophenol into phenol. The latter is subsequently mineralised to CO2 under aerobic conditions. Mixed bacterial strains produce complex mixtures of rhamnolipid congeners with improved emulsification properties, despite an absence of production advantage. Engineered consortia for lignocellulose-to-ethanol conversion reveal a clear division of labour, where each microbial species accomplishes a separate reaction and cooperatively performs an efficient conversion. The approach yields significantly higher ethanol productivity in a much shortened time and exhibits great robustness under various operational conditions, demonstrating its great advantages and promising prospects for industrialisation. Under appropriate conditions, the production rate and final titre of a recombinant protein exceed those obtained with any of the individual species, though at the cost of an inherent trade-off between productivity and substrate-utilisation efficiency [3].

Successful Applications

Synthetic microbial consortia composed of multiple species rather than single species have been less studied due to their complicated interactions. Natural microbial ecosystems as blueprints help understand interactions and thus provide guidance for synthetic systems with enhanced stability and adaptability. Bacteria, fungi and even mammalian cells can coexist in consortia [1]. When co-existing species belong to different kingdoms, the host is expected to establish a complicated community such as synthetic fungal-bacterial consortia. Cross kingdom communication mechanisms and the potential of mixed-kingdom consortia permit creates new insights into the design of synthetic complexes co-operating with diverse microbial species. Spatially structured microbial communities with high biodiversity are growing recognized as main determinants of function; however, their

Page | 101

NIJBAS ONLINE ISSN: 2992-5797
Publications 2025 PRINT ISSN: 2992-6122

better-defined multi-species synthetic counterparts are not widely used in synthetic biology. Microfluidic devices allow for improved understanding of spatially structured microbial communities by providing precise control of extrinsic parameters while maintaining many features of natural microbial habitats. They enable the control of spatial structures of microbial populations, thus are able to maintain biodiversity and improve stability in multispecies synthetic communities [13]. DNA microarray technology has been conducted to reveal Bacteroides fragilis gene responses to oxidative stresses. Even though oxygen stress regulation mechanisms of B. fragilis remain a mystery, this high-throughput technique has provided DNA microarray-based information to better understand the regulation of microbial metabolism. Microbial consortia have been widely used in industrial applications such as anaerobic consortia for pollutant degradation and wastewater treatments, aerobic consortia for biosurfactant production, and lignocellulose consortia to ethanol bioprocessing. Compared to pure anaerobic cultures and single strains, anaerobic consortia show higher efficiency in the degradation of chemical pollutants and wastewater treatments. Because of a high diversity present in biosurfactant-producing microbial consortia, they embody higher robustness against environmental stresses and wider application range. Lignocellulose microbial consortia exhibit higher hydrolytic performance and operational stability. Furthermore, microbial consortia are capable of establishing symbiotic relationships with plants and producing plant growth-promoting substances, implying their potential as inoculants in agricultural applications [1, 13].

Lessons Learned

Synthetic microbial consortia constitute man-made mixtures of two or more microbial strains, typically microorganisms of distinct species, whose components cooperate with one another to perform intricate functions that the individual members cannot carry out alone [3]. Such structures can be designed to enhance process efficiency and robustness, for example, by introducing heterologous functions among different species or by dividing a complex metabolic pathway into simple steps [2]. Like natural microbiomes, synthetic consortia confer advantages-or even (in some cases) viability-to their members through division of labour, cooperation, crossfeeding, or niche partitioning, and enable hosts to tackle spatial or temporal environmental fluctuations. Controlling the nature and strength of interactions among populations and components is thus key to engineering an effective synthetic consortium. In particular, the problematic emergence of noncooperating "cheaters" not only affects the state and preservation of microbial population structures but can also strongly reduce, or even annul, beneficial synergistic effects [3, 2]. From the viewpoint of applications, several challenges and questions must be considered when designing consortia. Which and how many microbial species should be considered? How flexible are consortia in terms of adapting to available nutrients and environmental changes? What are the overall costs and benefits of consortium life styles? Insights from synthetic consortia modelling and study bring new perspectives on answering these questions and open up promising opportunities for controlling microbiomes and microbial ecology more generally. Ultimately, targeted manipulation of both industrial microbiomes and synthetic consortia holds enormous promise for the development of more efficient, resilient and sustainable biotechnological processes in areas ranging from bioenergy to bioremediation, agriculture and biopharmaceuticals [3].

CONCLUSION

Industrial microbiomes and synthetic consortia represent a paradigm shift in biotechnology, offering a path toward greener and more resilient industrial processes. By combining natural ecological principles with synthetic biology, these systems can optimize division of labor, resource utilization, and adaptability in dynamic environments. Although technical and regulatory challenges persist, ongoing interdisciplinary research promises to overcome these barriers. Ultimately, engineered microbial communities hold the potential to redefine industrial biotechnology, supporting global efforts toward sustainability, circular economies, and climate resilience.

REFERENCES

- 1. Jia X, Liu C, Song H, Ding M et al. Design, analysis and application of synthetic microbial consortia. 2016. ncbi.nlm.nih.gov
- McCarty NS, Ledesma-Amaro R. Synthetic biology tools to engineer microbial communities for biotechnology. 2018. [PDF]
- 3. Mauri M, Gouzé JL, de Jong H, Cinquemani E. Enhanced production of heterologous proteins by a synthetic microbial community: Conditions and trade-offs. 2020. ncbi.nlm.nih.gov
- 4. Liang Y, Ma A, Zhuang G. Construction of Environmental Synthetic Microbial Consortia: Based on Engineering and Ecological Principles. 2022. ncbi.nlm.nih.gov
- 5. E. Duncker K, A. Holmes Z, You L. Engineered microbial consortia: strategies and applications. 2021. ncbi.nlm.nih.gov
- 6. Peng H, P. S. Darlington A, J. South E, Chen HH et al. A molecular toolkit of cross-feeding strains for engineering synthetic yeast communities. 2024. ncbi.nlm.nih.gov
- 7. van den Bogert B, Boekhorst J, Pirovano W, May A. On the Role of Bioinformatics and Data Science in Industrial Microbiome Applications. 2019. ncbi.nlm.nih.gov

OPEN ACCESS

NIJBAS ONLINE ISSN: 2992-5797
Publications 2025 PRINT ISSN: 2992-6122

8. Narayanasamy S, E L Muller E, R Sheik A, Wilmes P. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities. 2015. ncbi.nlm.nih.gov

- Angel Siles J, Michán C. Bacteria, archae, fungi and viruses: it takes a community to eliminate waste. 2019. ncbi.nlm.nih.gov
- 10. Cao Z, Yan W, Ding M, Yuan Y. Construction of microbial consortia for microbial degradation of complex compounds. 2022. ncbi.nlm.nih.gov
- 11. Mario Peña-Castro J, M. Muñoz-Páez K, N. Robledo-Narvaez P, Vázquez-Núñez E. Engineering the Metabolic Landscape of Microorganisms for Lignocellulosic Conversion. 2023. ncbi.nlm.nih.gov
- 12. Leticia Colin V, Rodríguez A, Antonio Cristóbal H. The Role of Synthetic Biology in the Design of Microbial Cell Factories for Biofuel Production. 2011. ncbi.nlm.nih.gov
- 13. Benninghaus L, S. Schwardmann L, Jilg T, F. Wendisch V. Establishment of synthetic microbial consortia with Corynebacterium glutamicum and Pseudomonas putida: Design, construction, and application to production of γ-glutamylisopropylamide and l-theanine. 2024. ncbi.nlm.nih.gov

CITE AS: Chukwudi Anthony Ugwuanyi (2025). Industrial Microbiomes and Synthetic Consortia for Enhanced Bioprocesses. NEWPORT INTERNATIONAL JOURNAL OF BIOLOGICAL AND APPLIED SCIENCES,6(2):93-102. https://doi.org/10.59298/NIJBAS/2025/6,2.93102